
c©Copyright 2019

Ignacio A. Cano

Optimizing Distributed Systems using Machine Learning

Ignacio A. Cano

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2019

Reading Committee:

Arvind Krishnamurthy, Chair

Xi Wang

Kevin Jamieson

Program Authorized to Offer Degree:
Paul G. Allen School of Computer Science & Engineering

University of Washington

Abstract

Optimizing Distributed Systems using Machine Learning

Ignacio A. Cano

Chair of the Supervisory Committee:
Professor Arvind Krishnamurthy

Paul G. Allen School of Computer Science & Engineering

Distributed systems consist of many components that interact with each other to perform certain

task(s). Traditionally, many of these systems base their decisions on sets of rules or configurations

defined by operators as well as handcrafted analytical models. However, creating those rules or

engineering such models is a challenging task. First, the same system should be able to work

under a combinatorial number of conditions on top of heterogeneous hardware. Second, they

should support different type of workloads and run in potentially widely different settings. Third,

they should be able to handle time-varying resource needs. These factors render reasoning about

distributed systems’ performance in general far from trivial.

In this thesis, we propose optimizing distributed systems using machine learning (ML). Our

main contribution is the design, implementation, augmentation, and evaluation of three distributed

systems that illustrate the impact of these ML-based optimizations: 1) CURATOR, a framework

that safeguards distributed storage systems’ health and performance by scheduling and executing

background maintenance tasks, 2) ADARES, an adaptive system that dynamically adjusts virtual

machine resources in virtual execution environments, and 3) PULPO, a federated system that ef-

ficiently trains machine learning models across different data centers. Each system instantiates

appropriate ML models for the task at hand, alleviating systems designers from manually tuning

rules and handcrafting complex analytical models. Our evaluations on real clusters show how our

ML formulations result in improved distributed systems’ efficiency and performance.

Table of Contents

Page

List of Figures . iv

List of Tables . vi

Chapter 1: Introduction . 1
1.1 The Machine Learning Revolution . 2
1.2 Machine Learning for Distributed Systems . 3
1.3 Machine Learning Modeling for Distributed Systems 4
1.4 The Roles of Machine Learning in Distributed Systems 5
1.5 The Challenges of Machine Learning for Distributed Systems 6
1.6 Contributions . 8

1.6.1 ML-based Policies: CURATOR . 9
1.6.2 ML-based Mechanisms: ADARES . 10
1.6.3 ML-System Co-Design: PULPO . 12

1.7 Organization . 14

Chapter 2: Background and Related Work . 15
2.1 Supervised Learning-based Techniques . 15

2.1.1 Background . 15
2.1.2 Related Work . 16

2.2 Bandit-based Techniques . 17
2.2.1 Background . 17
2.2.2 Related Work . 19

i

2.3 Reinforcement Learning-based Techniques . 20
2.3.1 Background . 20
2.3.2 Related Work . 22

Chapter 3: CURATOR . 24
3.1 Distributed Storage for Enterprise Clusters . 25

3.1.1 Clusters Architecture . 26
3.1.2 Storage System and Associated Data Structures 27

3.2 System Design . 30
3.2.1 Goals . 30
3.2.2 Components . 30
3.2.3 Management Tasks . 33
3.2.4 Scheduling Policies . 38
3.2.5 Measurements . 39
3.2.6 Reinforcement Learning-based Approach 44

3.3 Evaluation . 47
3.3.1 Setup . 47
3.3.2 Results . 49

3.4 Related Work . 53
3.5 Summary . 55

Chapter 4: ADARES . 56
4.1 Resource Utilization Measurements of Enterprise Clusters 57

4.1.1 Measurement Methodology . 58
4.1.2 Private Cluster Configurations . 58
4.1.3 Problem Characterization . 61
4.1.4 Opportunities and Challenges for Adaptive Resource Allocation 64

4.2 System Design . 66
4.2.1 Goals . 66
4.2.2 Components . 67
4.2.3 Bandit-based Approach . 71
4.2.4 Controller . 76

4.3 Evaluation . 77

ii

4.3.1 Setup . 78
4.3.2 Results . 80

4.4 Related Work . 88
4.5 Discussion and Future Work . 92
4.6 Summary . 92

Chapter 5: PULPO . 94
5.1 Problem Formulation . 95

5.1.1 Data distribution . 95
5.1.2 Learning Task . 97

5.2 System Design . 99
5.2.1 Goals . 99
5.2.2 Components . 100
5.2.3 Optimization-based Approach . 103

5.3 Evaluation . 107
5.3.1 Setup . 107
5.3.2 Results . 110

5.4 Related Work . 116
5.5 Discussion and Future Work . 118
5.6 Summary . 120

Chapter 6: Conclusions . 121

Bibliography . 123

iii

List of Figures

Figure Number Page

3.1 Cluster Architecture and Distributed Storage Fabric 26
3.2 Under-Replicated/Total Storage . 39
3.3 Garbage/Total Storage . 39
3.4 SSD and HDD Usage . 40
3.5 Max/Mean SSD and HDD Usage . 40
3.6 SSD and HDD Usage with CURATOR ON and OFF 43
3.7 SSD Reads in OLTP and OLTP-SKEWED Workloads 51
3.8 OLTP-DSS Workload using Q-learning . 52

4.1 Cluster-level Configuration . 59
4.2 Node-level Configuration . 60
4.3 VM-level Configuration . 61
4.4 VM Resource Usage . 62
4.5 Node Resource Usage . 62
4.6 Hotspots and Over/Underprovisioned VMs Ratio 63
4.7 Provisioning and Utilization Metrics Correlations 64
4.8 P95/Mean Usage Ratios . 65
4.9 ADARES Architecture . 68
4.10 VM Resource Provisioning and Utilization . 80
4.11 Latency . 81
4.12 vCPUs Allocations and VM IOPS . 82
4.13 LinUCB and Transfer Learning . 83
4.14 Static Workload . 85

iv

4.15 Increasing Memory Workload . 86
4.16 Periodic and Static Workload . 87
4.17 Different Contexts . 89

5.1 Centralized vs. Geo-distributed Learning . 96
5.2 PULPO Architecture . 101
5.3 Multi-Level Master/Slave Communication Tree 102
5.4 Communication Groups . 103
5.5 X-DC Transfer vs. Data Centers . 111
5.6 Objective vs. X-DC Transfer for CRITEO and WBCTR Datasets 112
5.7 Objective vs. X-DC Transfer for KAGGLE Dataset in Azure 114
5.8 Objective over time for KAGGLE Dataset in Azure 115

v

List of Tables

Table Number Page

1.1 Contributions Summary . 8

3.1 Metadata Tables accessed by Management Tasks 34
3.2 CURATOR Benefits/Costs Summary . 41
3.3 OLTP Workloads . 42
3.4 Reinforcement Learning Results Summary . 50

4.1 Nutanix Dataset Overview . 58
4.2 VM Instance Types and Min-Max Ranges . 78

5.1 GDML Dataset Overview . 108

vi

Acknowledgments

Many people have helped me throughout this long journey. First and foremost, I would like to

thank my advisor, Arvind Krishnamurthy. I wouldn’t be writing this thesis if it weren’t for his

always wise guidance and advise. It has been an honor and a tremendous pleasure to work with

him, not only an excellent researcher but also (and most importantly) an excellent person.

I would like to thank the other members of my committee, Xi Wang, Kevin Jamieson, and

Radha Poovendran. Their always precise and constructive feedback have helped us raise the bar

and improve the projects that compose this thesis.

Throughout the program I was able to intern at three great companies, Microsoft, Nutanix, and

Google. I would like to particularly thank my awesome mentors Markus Weimer, Srinivas Aiyar,

and Andrey Gubichev. Also, thanks to my collaborators Dhruv Mahajan, Carlo Curino, Chern

Cheah, Karan Gupta, Petros Venetis, and Pedro Fonseca, for all their help throughout our projects.

I have been truly lucky to meet and interact with so many brilliant people here at the University

of Washington. I would like to thank my closest UW friends and office mates, Shrainik Jain and

Vincent Lee. We have shared the ups and downs of grad school over the past 5+ years, and we are

finally seeing the light at the end of the tunnel. Thanks to the rest of the gang, Shumo Chu, Alex

Mariakakis, Koosha Khalvati, and Aleksander Holynski, who have made my tenure here really

enjoyable. I am also grateful to Ming Liu, Danyang Zhuo, Naveen Kr. Sharma, Anna Simpson,

Lequn Chen, and Antoine Kaufmann for all their valuable feedback.

I would also like to thank Tianqi Chen and Marco Tulio Ribeiro, my former lab mates. Thanks

vii

to Sameer Singh, Ben Taskar, and Carlos Guestrin for supporting and advising me during the

beginnings. I have been really lucky to meet (and briefly work) with Ben before his unexpected

passing.

I am also thankful to Elise DeGoede for all her support and help throughout the program.

Thanks to my sponsors, the Argentinean Government and Fulbright, for their financial support

during my first two years. I also want to thank the other Argentinean fellows, Bruce, Pipe, Marca,

Colitos, Albert, Eze, and Chino, who have made this great experience even better. Special thanks

to Nico and Kaddy, our family here in Seattle, and to all my other friends, here and back home, for

all the great memories.

Finally, I would like to thank my amazing wife, Laura, for joining me in this great adventure

and for always being there. I have been blessed with two incredible daughters, Magda and Coco.

Raising and watching them grow during the course of my studies has been, by far, the most re-

warding experience of all. Last but not least, I would like to thank all my family and in-laws for

supporting us from Argentina. Special thanks to my parents, Carmen and Ernesto, for always en-

couraging me to pursue my dreams and inculcating me the two core values that were fundamental

to bring this effort to an end: perseverance and hard work.

viii

Dedication

to my dear wife, Laura

to my beloved daughters, Magda and Coco

to my wonderful parents, Carmen and Ernesto

ix

1

1 | Introduction

Distributed systems comprise of many components that interact and cooperate with each other to

perform certain task(s). For example, storage tiering services automatically migrate data between

solid-state (SSDs) and hard disk drives (HDDs) based on usage, virtualization software allows to

package applications on virtual machines (VMs) and execute them together with other workloads

on the same physical hardware, geographically distributed systems support data pipelines to join

and analyze disperse datasets, and so on.

Many of these real-world systems are heuristic-based; that is, they heavily rely on (user-

defined) policies, rules, or configurations derived from specific domain knowledge in order to

make decisions, and they typically use analytical models to describe their behavior. However, the

design of these systems, together with their rules and models, is an inherently difficult task. In

this regard, the limit is usually the complexity that arise from the large number of components and

connections, the intricate component dependencies, the irregular interactions and resource needs,

and the imprecise descriptions. Further, the same system might need to handle different workloads

in different settings, as well as run in heterogeneous hardware platforms or even across different

geographic regions. To make matters worse, these workloads might also change over time and

applications may interfere with each other while contending for shared resources.

These factors make it hard to reason about the performance of distributed systems in general,

complicate the ability to create accurate models, and render static configurations inappropriate.

Even though many highly qualified engineers are typically involved in performance improvement

tasks, we still often see (surprisingly) low efficiency in many of these systems in production.

2

In order to overcome these difficulties, it becomes necessary to build smarter distributed sys-

tems that could learn and improve their performance over time. By leveraging machine learning

techniques, this new generation of self-tuning learning systems would alleviate systems designers

from the task of manually manipulating knobs, tuning complicated rules or policies, and creating

complex mechanisms based on handcrafted analytical models, thus significantly reducing human

involvement in modern software development processes. Such systems would, instead, be able to

learn the underlying complex dynamics where they operate in a way that would better resemble

reality, and would generalize and adapt better, on a case-by-case basis, at runtime, which in turn

would foster (significant) efficiency and performance boosts.

1.1 The Machine Learning Revolution

Machine learning is the sub-field within Artificial Intelligence (AI) that deals with the study of al-

gorithms that improve their performance at some task with experience. More precisely, a computer

program learns from experience E with respect to some class of tasks T and performance measure

P, if its performance at tasks in T , as measured by P, improves with experience E [150].

Over the last decades, the impressive growth in data and computational capabilities have en-

abled the use of machine learning in many fields, from healthcare and medicine, passing through

manufacturing and retail, to self-driving cars and financial services. Almost every recent tech-

nological advance involves some aspect of machine learning. Computers powered by machine

learning can today perform many tasks that not long ago were assumed to require human cogni-

tion [39].

Gartner estimates that by 2022, one in five workers engaged in mostly non-routine tasks will

rely on some form of AI to do a job. In 2021, AI augmentation (i.e., a combination of human and

artificial intelligence, where both complement each other) will generate $2.9 trillion in business

value and recover 6.2 billion hours of worker productivity [86]. Within AI, machine learning

attracted around 60% of the estimated $8-12 billion in investments during 2016 [39]. It comes

as no surprise that machine learning is and will continue to be a fundamental player in digital

strategies all over the world.

3

1.2 Machine Learning for Distributed Systems

Distributed systems are everywhere and we are interested in their efficiency. Even though the

advent of virtualization led to significant improvements in terms of the utilization of computational

resources, recent studies show that computational usage levels of distributed systems deployed in

private and public clouds are still far from optimal [53, 43, 63, 226]. Even more, studies show that

communication inefficiencies also lead to problems [80, 95, 218]. We therefore need new ways to

make computers more capable [188, 97, 180].

In our quest for finding new ways of making distributed systems more efficient, we first need

to take a step back and identify the sources of the problem. Multiple reasons come to mind when

we want to understand why many contemporary systems are still inefficient. Despite the evolu-

tion of workload and application demands, most systems still (heavily) rely on hardcoded policies

that dictate their behavior, or fixed configurations, or complex built-in mechanisms that sometimes

disregard the underlying problem structure nor leverage already-collected data. For example, dis-

tributed storage systems trigger expensive background maintenance tasks (e.g., garbage collection)

disregarding the end-user foreground request patterns. Or users statically configure VMs resources

(e.g., memory) based on (guessed) workload peak utilization metrics, but they ignore the fact that

utilization levels usually present important temporal patterns. Or distributed data pipelines sys-

tems transfer huge amounts of data across data centers, and neglect the fact that transferring only

summaries could suffice.

On that account, there is an opportunity for optimizing distributed systems using machine learn-

ing, with potentially broad implications for computing as a whole [91]. In this thesis, we leverage

problem structure and data collected regularly by current systems in order to make them more effi-

cient and responsive to different runtime conditions. To that end, we use existing machine learning

techniques, both to inform decisions as well as to drive system behavior.

4

1.3 Machine Learning Modeling for Distributed Systems

The existing literature on machine learning is extensive and encompasses different areas, ranging

from optimization theory to algorithms and applications. The suitability of the actual underlying

machine learning model used to optimize a distributed system mainly depends on the characteris-

tics and constraints of the problem domain.

In particular, we identify three broad classes of techniques that help increasing distributed

systems’ efficiency and performance, along different dimensions.

Whenever we have access to a training set of labeled examples and we are interested in learning

rules that can predict labels of future unseen examples, we can rely on batch learning (also called

statistical learning), probably the most common supervised learning setting [61]. Learning such

rules is typically done through an iterative procedure using mathematical optimization techniques.

However, the scale of modern datasets and/or the application constraints sometimes require sys-

tems to perform such optimization in a distributed fashion. In this distributed setting, a critical

challenge is to efficiently communicate and coordinate information across machines [191]. By

co-designing systems with machine learning through the lens of optimization, we could potentially

improve both system’s computational efficiency as well as reduce communication overheads.

On the other hand, if the system needs to adapt to changes, or even if it does not have (enough)

training data to begin with, we can resort to online learning. The online learning framework is

a powerful way of dealing with sequential decision problems, and the algorithms are typically

fast, memory-efficient, and simple to implement [62]. An online learning algorithm receives a

sequence of examples and processes them one-by-one. On each round, the algorithm receives an

example and predicts its label. Then, the algorithm receives the (correct) label corresponding to the

example, and uses this new labeled example to improve its predictions on subsequent rounds [61].

This generic framework can be applied to build highly adaptive distributed systems, where their

behavior could be (mainly) driven by online models that evolve over time. However, as these

systems would only take the (seemingly) best action suggested by the ML models, there is no

way of knowing what would have happened had they taken a different action; that is, maybe a

5

different action could have been better. By leveraging bandit-based algorithms [38], which fall

under the online learning umbrella, these systems would, by design, explore different actions so

as to refine their estimates, for which they would then receive immediate feedback, i.e., was it the

“right” action to take? For example, in the case of virtual environments, where resource allocation

changes to VMs can exhibit immediate performance improvements.

Finally, there are systems that face situations where they do not receive immediate feedback

and where the current decisions can potentially impact performance over a long horizon. For

example, in a distributed storage tiering service, moving infrequently accessed data from SSDs

to HDDs may exhibit a delayed penalty after a non-expected future access. Although this setting

can be seen as an extension of the previous approach, the feedback sparsity makes the problem

(much) harder to learn. By leveraging reinforcement learning-based techniques [199, 201, 198],

these systems would be able to perform tasks with non-immediate feedback, as well as adapt to

changing dynamics.

All in all, there are many machine learning modeling techniques to choose from when applying

ML to optimize distributed systems. As a rule of thumb, simplicity is something that should always

be a key goal in the system design and unnecessary complexity should be avoided.

1.4 The Roles of Machine Learning in Distributed Systems

Besides the different machine learning modeling strategies we can use to optimize distributed sys-

tems, the control we have on the system itself is crucial in determining the role ML will play and

(potentially) its impact. Applying ML to a system where we have no control over its internals is

different from doing so to a system where we can change/augment its core. Similarly, applying

ML to a system with years in production is different than creating a brand new system with built-in

ML capabilities from the ground up.

Depending on whether we can alter or augment the policies according to which decisions are

made in a distributed system, machine learning could be used as an enabler for “smarter” policies.

For example, ML-based policies could be used to decide when to trigger background maintenance

tasks in black-box distributed storage systems in order to reduce end-user access latency and min-

6

imize interference with foreground work. Herein, as the ML-based policy would not be that well

integrated to the core of the system itself, it may experience delayed feedback on whether the deci-

sions made were “good” or “bad”. Hence, a reinforcement learning-based technique might be the

right modeling approach.

In the case where we have greater control, a more powerful role for ML would be to comple-

ment, augment, or perhaps replace core system mechanisms. For example, an ML-based mech-

anism could be leveraged to manage resource allocations in gray-box virtual execution environ-

ments, thus complementing typical memory reclamation techniques (e.g., ballooning, hypervisor

swapping) and helping to multiplex the underlying physical resources. As the ML-based mecha-

nism would be part of the system itself, it might be able to get immediate feedback of how it is

doing, therefore, a bandit-based approach may be more appropriate.

Finally, whenever we have full control (i.e., white-box system) or we are at an early design

stage, we could treat ML as a first-class citizen. In other words, we could co-design the sys-

tem together with machine learning so that they are aware of each other: ML-aware system and

system-aware ML. For example, this ML-System co-design could be used to efficiently trade-off

computation and communication in distributed systems in order to perform cost-effective training

of machine learning models across continents.

In this thesis, we present three case studies of applying machine learning to optimize distributed

systems, from a simpler ML-based policy application, passing through an intermediate ML-based

mechanism, to the more involved case of using ML-System co-design.

1.5 The Challenges of Machine Learning for Distributed Systems

Researchers are starting to leverage advances in machine learning to optimize systems, either by

augmenting or replacing current heuristics and data structures [97, 119]. However, even though

machine learning for systems is a very promising field, the space has only been lightly explored,

arguably, due to the many challenges involved in the process. In this section, we describe some

of the common challenges of using machine learning to optimize distributed systems, and how we

address them in our work.

7

First, we need a strategy to overcome the cold start problem, especially in the bandit or rein-

forcement learning-based approaches, where it might take too long to distill a proper model. We

want our systems to make the right decisions as soon as possible in order to minimize the costly

trial and error interactions with the real environments. In this case, we propose bootstrapping the

learning agents with already-collected historical traces as well as simulations. By this means, we

leverage transfer learning in order to expose the agents to a broad set of relevant situations in ad-

vance, which would accelerate training and steer the systems towards more efficient states faster,

thus reducing the sample complexity.

Second, we need proper setups for the machine learning models. Such setups depend on how

the systems are structured in terms of what features can be collected and how the performance

can be quantified. In other words, we require “cheap” mechanisms to gather sufficient training

data to feed into these (oftentimes) data hungry models. To aid in the learning process, we create

efficient sensing mechanisms as well as extend existing logging infrastructure in order to provide

our models with a global though fine-grained view of the underlying system components. Further,

we propose intuitive yet powerful functions that promote high-performance system behavior.

Third, we need an efficient way to represent high-dimensional spaces and estimate performance

valuations of unseen conditions. Moreover, we need our systems to be able to make seemingly sub-

optimal decisions in search of better overall performance. To this end, we leverage different ML

techniques to efficiently encode high-dimensional data and we rely on regularization mechanisms

to ensure the models can generalize to real end-user workloads. Further, we foster our learning

agents to explore, within safety bounds, different states so as to build better approximations of the

true underlying dynamics.

Finally, we should not disrupt the normal functioning of the systems, i.e., we should be extra

cautious and make careful decisions in order not to impair their correct behavior. Further, in the

quest for real-world adoption, we need to provide insight to the operators about the models’ deci-

sions; that is, we should encourage interpretability in our models. To this end, we promote safety

by revising ML-based decisions with manual rules to flag abnormalities and potentially discarding

the machine learning-based recommendations. Moreover, we leverage models that provide uncer-

8

tainty in their predictions so as to aid the domain experts in better understanding the algorithms’

decision-making process.

Overall, we follow a data-driven approach, where we use both data from real-world systems

running in production and simulations in order to initialize our models. Besides leveraging existing

ML algorithms, we develop the artifacts necessary for improving distributed systems’ efficiency

and performance, with support for heterogeneous workloads and environments, and time-varying

resource needs.

1.6 Contributions

This thesis proposes using machine learning to optimize distributed systems. In order to demon-

strate the effect of these ML-based optimizations, we design, implement, augment, and evaluate

three real-world systems: 1) CURATOR, a framework that safeguards the health and performance of

distributed storage systems by leveraging ML-based policies to schedule background maintenance

tasks using reinforcement learning, 2) ADARES, an adaptive system that relies on an ML-based

mechanism to dynamically adjust virtual machine resources running in virtual execution environ-

ments using bandit-based techniques, and 3) PULPO, a federation-based system co-designed with

machine learning optimization techniques to efficiently train models from geo-distributed datasets.

Distributed System Context ML Role Modeling Technique

CURATOR Distributed Storage System Policy Reinforcement Learning

ADARES Virtual Execution Environment Mechanism Contextual Bandits

PULPO Geo-Distributed Machine Learning First-class Citizen ML-System Co-Design

Table 1.1: Contributions Summary

9

1.6.1 ML-based Policies: CURATOR

Today’s cluster storage systems embody significant functionality in order to support the needs of

enterprise clusters. For example, they provide automatic replication and recovery to deal with

faults, they support scaling, and provide seamless integration of both solid-state and hard disk

drives. Further, they support storage workloads suited for VMs, through mechanisms such as snap-

shotting and automatic reclamation of unnecessary data, as well as perform space-saving transfor-

mations such as dedupe, compression, erasure coding, etc.

Closer examination of these tasks reveals that much of their functionality can be performed in

the background. Based on this observation, herein, we present the design and implementation of

CURATOR, a background self-managing layer for storage in enterprise clusters. In particular, we

perform this work in the context of a commercial enterprise cluster product developed by Nutanix.

Nutanix is a provider of enterprise clusters, which blends web-scale engineering and consumer-

grade design to natively converge server, storage, virtualization, and networking, into a resilient,

software-defined solution.1

CURATOR is an extensible, flexible, and scalable framework that was developed over a period

of five years, and has been deployed on thousands of enterprise clusters. CURATOR is mainly

comprised of two core components:

1. A background execution framework for cluster management tasks, where all the tasks can be

expressed as MapReduce-style operations over the corresponding data.

2. A replicated and consistent key-value store, where all the important metadata of the storage

system is maintained.

Herein, we report on the performance of the system. We find that the system performs garbage

collection and replication effectively, balances disks, and makes storage access efficient through a

number of optimizations. The resulting framework is general enough to incorporate a wide variety

of background transformations.

1For more details refer to http://www.nutanix.com.

http://www.nutanix.com

10

Nonetheless, we notice that the deployed scheduling heuristics do not necessarily work well in

all clusters as there is significant heterogeneity across them as well as important workload fluctua-

tions over time. Therefore, we propose to augment CURATOR with an ML-based policy to address

the issues of when should these background management tasks be performed and how much work

they should do. Our ML-based scheduling policy uses reinforcement learning to drive the schedul-

ing decisions, leverages historical data from real clusters to speed up training, and has the ability

to learn over time and adapt to (changing) workload characteristics.

We focus our efforts on the following tiering question: how much data to keep in SSDs and

HDDs? Empirical evaluation on five simulated workloads on real clusters confirms the general

validity of our approach, and shows up to ∼35% improvements in SSD hits and up to ∼20%

latency reductions over threshold-based approaches.

1.6.2 ML-based Mechanisms: ADARES

Virtual execution environments are widely used in industry as they provide a high degree of flex-

ibility and allow efficient use of cluster resources. An application that might otherwise require a

dedicated server to run, can be deployed as a virtual machine (VM) and executed together with

other VMs on the same physical hardware, thus enabling more efficient use of resources [210].

There are however many hurdles in achieving both high system efficiency and optimal VM

performance. For example, users typically allocate resources to VMs based on guesswork, which

hardly matches the actual resource needs of the applications. Even more, the application workload

for a VM typically changes over time [24, 76, 64, 102], rendering static resource allocation settings

inappropriate.

Incorrect resource allocations can result in a variety of problems. VMs that are not provided

enough resources could experience significant application level penalties, such as trashing or swap-

ping. Further, VMs that underutilize their resources could affect the overall system efficiency,

whereas VMs that starve resources could potentially damage other VMs, which could have other-

wise benefited from those extra resources [215, 216, 23, 214]. This motivates the need for a system

that adaptively changes the amount of system resources allocated to each VM in a cluster.

11

Herein, we first perform a large-scale measurement study of clusters to characterize the re-

source needs for VMs in the real-world. We gather an extensive dataset by instrumenting more

than 3.6K enterprise clusters running the same commercial computation and storage virtualiza-

tion product developed by Nutanix as before. Our analysis allows us to quantify the extent to

which user-configured resource allocations are incorrect and the overall impact on cluster effi-

ciency. Among our main findings, we observe VM instances with significant amounts of overpro-

visioning as well as some underprovisioning. Further, we find significant variation across time and

VMs within a cluster, which renders static resource allocations ineffective.

Unlike most existing traces [54, 172, 224, 149], our data refers to privately managed, enter-

prise clusters that are provisioned and operated independently by 2k+ different companies. Such

environments have received little attention despite representing an important virtualization envi-

ronment that is extensively used by companies [174]. Furthermore, the traces we collect contain

a richer set of metrics (e.g., VM memory usage, effective I/O operations, etc.) than most other

traces, enabling a more thorough analysis of the resource allocation problem.

Based on our findings, we design and build ADARES, an adaptive system that leverages an ML-

based mechanism to automatically optimize VM resource allocations in real clusters. ADARES

uses the multi-armed bandit framework with contextual information [125], also known as contex-

tual bandits, to dynamically tune VM resources, namely virtual CPUs (vCPUs) and memory. By

design, the contextual bandits framework allows a cluster manager to adapt to the VM workload

characteristics through online learning, and represents a natural half-way point between supervised

learning and reinforcement learning [6, 131, 28, 125].

A key challenge in leveraging contextual bandits in our setting is the “unsafe” exploration that

is required for learning something useful. In other words, we need to be careful of the changes we

perform to the VMs as we do not want to (permanently) impair them. To address this challenge,

we build a cluster simulator from data collected by running different benchmarks in experimental

clusters. We then initialize (or warm-up) our model(s) offline using the simulator, and transfer

the knowledge gained in the simulated environment to the real clusters, in order to conduct safer

configuration changes as well as speeding up training [161, 85], which translates into up to 2×

12

resource savings when compared to models learned from scratch. We also leverage the cluster’s

instrumentation by providing our model a full picture of the cluster, node and VM states, so that it

can make more informed decisions.

Empirical evaluation on synthetic workloads on real clusters shows that our ML-based mecha-

nism reduces compute and memory allocations by up to 35% and 60% respectively, while achieving

more predictable VM-level performance, when compared to other non-trivial baselines.

1.6.3 ML-System Co-Design: PULPO

Modern organizations have a planetary footprint. Data is created where users and systems are lo-

cated, all around the globe. The reason for this is mainly two-fold: 1) minimizing latency between

serving infrastructure and end-users, and 2) respecting regulatory constraints, that might require

data about citizens of a nation to reside within the nation’s borders.

On the other hand, many machine learning applications require access to all that data at once

to build accurate models. For example, fraud prevention systems benefit tremendously from the

global picture in both finance and communication networks, recommendation systems rely on the

maximum breadth of data to overcome cold start problems, and the predictive maintenance rev-

olution is only possible because of data from all markets. These types of applications that deal

with geo-distributed datasets belong to a class of learning problems, which we call geo-distributed

machine learning (GDML).

The state-of-the-art approach machine learning from decentralized datasets is to centralize

them. This involves a two-step process: 1) the various partitions of data are copied into a sin-

gle data center—thus recreating the overall dataset in a central location, and 2) learning takes

place there, using existing intra-data center technologies. Based on conversations with practition-

ers at Microsoft, we gather that this centralized approach is predominant in most practical settings.

This is consistent with reports on the infrastructures of other large organizations, such as Face-

book [206], Twitter [130], and LinkedIn [17].

The reason for its popularity is two-fold, on the one hand, centralizing the data is the easi-

est way to reuse existing machine learning frameworks [231, 137, 132]), and on the other hand,

13

machine learning algorithms are notoriously communication-intensive, and thus assumed to be

non-amenable to cross-data center execution.

The centralized approach has two key shortcomings:

1. It consumes large amounts of cross-data center (X-DC) bandwidth (in order to copy the raw

data to a single location). Wide-area network bandwidth has been shown to be scarce, expen-

sive, and growing at a slower pace than most other intra-data center (in-DC) resources [169,

217, 126, 95].

2. It requires raw data to be copied across data centers, thus potentially across national borders.

While international regulations are quickly evolving, we speculate that the growing concerns

regarding privacy and data sovereignty [87, 67, 176, 75] might become a key limiting factor

to the applicability of centralized learning approaches.

We hypothesize that both challenges will persist or grow in the future [219, 108].

In this work, we propose PULPO, a system that enables geo-distributed learning, where raw

data is kept in place, and learning tasks are executed in a cross-data center fashion. We show

that, by co-designing the system with machine learning, PULPO can achieve orders of magnitude

lower cross-data center bandwidth consumption in many practical settings. In particular, PULPO

leverages optimization-based techniques [139] together with a distributed resource management

fabric to perform efficient geo-distributed training.

Moreover, as the geo-distributed learning approach PULPO enables does not require to copy

raw data outside their native data center (only statistics and estimates are copied), it is structurally

better positioned to deal with evolving regulatory constraints. A detailed study of this legal aspect

of the geo-distributed approach is beyond the scope of this work.

The solution we propose serves as an example for a new generation of co-designed systems and

learning algorithms, and allows us to present the first study on the relative efficiency of centralized

versus geo-distributed approaches. In this work, we concentrate on two key metrics: cross-data

center bandwidth consumption and learning runtime. Note that while the above metrics are of great

14

practical relevance, many other dimensions (e.g., resilience to catastrophic data center failures) are

worth considering when comparing alternative approaches.

We show experimentally that properly designed centralized solutions can achieve faster learn-

ing times (when the data copy latency is hidden by streaming data as it becomes available), but that

co-designed distributed solutions with ML can achieve much lower cross-data center bandwidth

utilization, and thus substantially lower cost for large-scale learning.

1.7 Organization

The remainder of this thesis is structured as follows:

Chapter 2 introduces ML background information and related work of each of the techniques used.

Chapter 3 introduces CURATOR and describes its reinforcement-learning task scheduling policy.

Chapter 4 describes ADARES and its bandit-based mechanism to adjust VM resources.

Chapter 5 presents PULPO, and its co-design with ML to reduce communication costs.

Chapter 6 concludes.

15

2 | Background and Related Work

In this chapter we present the necessary background information and general related work of sys-

tems optimized using machine learning. The literature on methods for machine learning can be

overwhelming, and different techniques are more appropriate for different scenarios. Broadly

speaking, we can encompass machine learning into three main types: supervised learning, un-

supervised learning, and reinforcement learning.

Besides the above three, another very powerful framework, though oftentimes overlooked in the

systems community, is the bandit framework. In particular, we are interested in contextual bandits,

which can be considered a natural half-way point between supervised learning and reinforcement

learning. The construction of context using features comes from supervised learning, while explo-

ration, necessary for good performance, is inherited from reinforcement learning [6]. Herein, we

provide an overview of supervised learning, contextual bandits, and reinforcement learning.

2.1 Supervised Learning-based Techniques

2.1.1 Background

Although we do not use supervised learning per se to optimize any system in this work, we do

leverage optimization-based techniques that can be used for training supervised learning models.

Thus, we include a brief overview of supervised machine learning here as well as an introduction

to distributed methods.

In supervised learning, the goal is to learn a mapping from inputs x to outputs y, given a labeled

dataset D = {xi,yi}N
i=1, where N is the number of training examples. In general, each training

16

input xi is a d-dimensional vector of numbers, called feature vector, and each output yi is either a

categorical or nominal variable (e.g., spam or ham), in which case is called a classification problem,

or a real-valued scalar (e.g., salary), in which case is called a regression problem [155].

The learning goal can be expressed as an objective function (e.g., low error when predicting a

person’s salary). Generally, by minimizing this function, the ML algorithm obtains a model (e.g., a

d-dimensional vector of numbers, where each of the numbers is called a model parameter) capable

of making predictions on future unseen inputs. In general, there is no closed-form solution, thus the

algorithm iteratively refines the model using some mathematical optimization technique in order

to approach the optimal solution [132].

However, oftentimes, training a model in a single machine might become infeasible, mainly

in terms of training time, provided the dataset is large enough [127]. In such context, distributed

machine learning (DML) emerged as a natural way to scale out learning algorithms [163], where

the dataset is partitioned among multiple worker nodes. Note that the vast majority of datasets

are horizontally partitioned, wherein subsets of examples are stored at different nodes. In general,

learning proceeds in communication rounds. At each round, a server node sends the current al-

gorithm state (e.g., the model parameters) to the workers. Each worker node then performs some

local computation based on the state received and its shard of the dataset, and sends an update to

the server. The server applies the updates to the algorithm state, and the process repeats [144].

Traditional DML typically focuses on distributing computation across machines within a sin-

gle data center to accelerate training, and many systems offer different abstractions for running

learning algorithms in this mode [132, 137, 146, 4, 225, 49].

2.1.2 Related Work

A considerable amount of literature has been published on applying different supervised learning

techniques into systems.

There has been some work on failure and troubleshooting of systems using supervised learning.

For example, the work by Fulp et al. [83] focuses on predicting computer system failures using

support vector machines (SVMs) [40]. CLUEBOX [179] leverages available performance logs

17

to characterize workloads, predict performance, and discover anomalous behavior using random

forests [36]. Other studies apply ML techniques to make systems more secure. One such system

is HeatRay [68], which uses SVMs for driving security configuration changes to combat identity

snowball attacks.

More recent applications of ML into systems encompass areas such as data structure de-

sign [119], microarchitecture [97], compilers [57], and caches [26]. Kraska et al. [119] uses linear

models and neural networks to enhance/replace indexed structures, such as B-Trees or Bloom fil-

ters, by leveraging the distribution of the data being indexed. Hashemi et al. [97] treats prefetching

as a machine learning classification problem. They use deep learning to predict future memory

accesses that will miss in the on-chip cache and access memory based on past history.

The work by Bortnikov [32] proposes using gradient-boosted decision trees [82] to predict

the slowdown of a task compared to other similar tasks in order to proactively avoid stragglers in

distributed analytical systems. Within the same line of work, Yadwadkar et al. [226, 227] uses

SVMs to predict if a node is too busy to finish a task in a timely manner. They then modify the

cluster scheduler to use those predictions so as to avoid creating stragglers.

Further, DeepMind created an efficient and adaptive framework to understand data centre dy-

namics and optimize efficiency using ML [60]. In particular, they leverage historical data such

as temperatures, power, pump speeds, to train an ensemble of neural networks to improve power

usage effectiveness.

2.2 Bandit-based Techniques

2.2.1 Background

2.2.1.1 Contextual Bandits

There is another type of learning problem that falls under the category of multi-armed bandit

(MAB) with contextual information. In this problem, also known as contextual bandits, an agent

collects rewards for actions taken over a sequence of rounds. In each round, the agent chooses the

action to take based on: 1) context (or features) of the current round, and 2) feedback (or rewards)

18

obtained in the previous rounds. In any given round, the agent observes only the reward for the

chosen action, thus the feedback is said to be partial [6].

More formally, the learning agent proceeds in a sequence of discrete trials, t = 1,2,3... At

each trial t, the agent observes the context xt , and selects an action, at ∈ At , where At is the set

of all actions available at time t. The agent then receives a reward, rt,at ∈ [0,1], and improves its

action-selection strategy with the tuple (xt ,at ,rt,at) [131].

The total reward for the agent after T trials is defined as ∑
T
t=1 rt,at . Similarly, the optimal ex-

pected T -trial reward is defined as E[∑T
t=1 rt,a∗t], where a∗t is the action with the maximum expected

reward at trial t. The goal of the agent is to maximize the expected reward, or, equivalently, mini-

mize the regret with respect to the optimal action-selection strategy. The regret of the agent after

T trials is formally defined as follows:

R(T) = E[
T

∑
t=1

rt,a∗t]−E[
T

∑
t=1

rt,at] (2.1)

A fundamental challenge in bandit problems is the need for balancing exploration and exploita-

tion. In order to minimize the regret in Equation 2.1, the agent exploits its past experience and

chooses the action that appears to be the best. However, that action might be sub-optimal due to

the agent’s insufficient knowledge. Instead, the agent may need to explore by selecting seemingly

sub-optimal actions in order to gather more knowledge about them [131].

Common applications of contextual bandits include, but are not limited to, personalized news

recommendations, clinical trials, and mobile health interventions [203, 28]. There are many algo-

rithms for contextual bandits, such as EXP4 [38], Epoch-Greedy [125], and LinUCB [131]. We

describe the latter next.

2.2.1.2 LinUCB

LinUCB [131] is an upper confidence bound (UBC) algorithm. In trial t, these algorithms [7, 16]

estimate both the mean reward µ̂t,a of each action a as well as a confidence interval ct,a, so that

|µ̂t,a− µa| < ct,a holds with high probability. Then, they select the action with the highest upper

19

confidence bound at = argmaxa(µ̂t,a + ct,a).

Given some parametric form of reward function, different methods exist to estimate the con-

fidence interval of the parameters from which we can compute the UCB of the different actions.

However, those approaches are typically expensive as they discard the structure of the contexts,

even though the contexts often have structure [38].

Li et al. [131] shows that a confidence interval can be computed efficiently in closed form

when the payoff model is linear. LinUCB assumes that the reward given a context follows a linear

structure with noise. Although this is a strong assumption, it makes the problem computationally

tractable and works well in practice.

2.2.2 Related Work

In recent years, there has been an increasing amount of literature on using bandit-based techniques

to optimize systems. In particular, bandits have gained more attraction in the database community.

For example, Cuttlefish [109] supports adaptive processing of online database query plans using

the multi-armed bandit framework. The system explores candidate physical operator instances

during query execution and exploits the fastest ones using Thompson sampling [143, 8]. Another

adaptive query processing framework that leverages bandits is Micro Adaptivity [170], conceived

as part of Vectorwise [237]. It uses epoch-based ε-greedy bandit policies to select between several

black-box “flavors” of vectorized operators at each function call. OtterTune [209] is an autonomic

DBMS that leverages Gaussian Processes [194] to effectively explore/exploit the high-dimensional

space of DBMS configuration parameters.

Pytheas [107] leverages bandits to optimize quality of experience in networked applications,

such as video streaming, internet telephony, and social networks. REX [164] is a framework for

self-adaptive software architectures that uses Thompson sampling to solve the search space explo-

sion problem inherent in runtime emergent software. By using a bandit-based approach, the authors

show how a web server can be autonomously assembled from discovered parts, and how the system

can subsequently be optimized by seamlessly reassembling it from alternative components.

SiblingRivalry [13] applies bandit-based techniques to allow parallel programs to continuously

20

adapt and optimize themselves to their execution environment. Similarly, OpenTuner [12] also

uses bandits for program auto-tuning to help narrowing down the search space; that is, techniques

which perform well by finding better configurations are allocated larger budgets of tests to run,

whereas techniques which perform poorly are allocated fewer tests or disabled entirely.

JouleGuard [100] is a runtime control system that coordinates approximate applications with

system resource usage to optimize energy consumption. It identifies the most energy efficient

system configuration using the multi-armed bandit framework.

Recent work leverages contextual bandits to perform off-policy evaluation in distributed sys-

tems, i.e., it uses already-collected data from deployed policies in current systems to evaluate new

candidate policies offline [129]. In their work, the authors develop a methodology for harvesting

existing randomness without intervening in live systems. In particular, they apply their methodol-

ogy to machine health monitoring in Microsoft Azure, load balancing, and caching problems.

Finally, the popular system NEXT [106] facilitates the development, testing, and deployment

of bandit algorithms (and active learning in general) for real applications.

2.3 Reinforcement Learning-based Techniques

2.3.1 Background

2.3.1.1 Reinforcement Learning

Reinforcement learning (RL) can be thought of an extension of contextual bandits, where the ac-

tions change the state of the world. More formally, the agent interacts with its environment in a

sequence of discrete time steps, t = 0,1,2,3.... At each time step t, the agent senses the environ-

ment’s state, st ∈ S, where S is the set of all possible states, and selects an action, at ∈Ast , where

Ast is the set of all actions available in state st . The agent receives a reward, rt+1 ∈ R, and finds

itself in a new state, st+1 ∈ S.

RL is about learning a policy π that maps situations to actions, so as to maximize a numer-

ical reward signal over the long run. If the sequence of rewards received after time step t is

rt+1,rt+2,rt+3, ..., then the objective of learning is to maximize the expected discounted return.

21

The discounted return Rt is given by:

Rt = rt+1 + γrt+2 + γ
2rt+3 + ...=

∞

∑
k=0

γ
krt+k+1 (2.2)

where 0 ≤ γ ≤ 1 is called the discount factor. γ = 0 will make the agent “myopic” (or short-

sighted) by only considering immediate rewards, while γ → 1 will make it strive for a long-term

high reward [199].

At every time step t, the agent is not told which actions to take, but instead, it must discover

which actions yield the most reward by trying them out [199]. As with contextual bandits, there

are two things that are useful for the agent to do, known as the exploration/exploitation trade-off. It

can either exploit the knowledge that it has and find a good policy with respect to this knowledge,

at the risk of missing some large reward out there, or it can explore the state space in search of a

region with more reward, at the risk of wasting time or collecting punishments.

In general, reinforcement learning can be applicable to situations where we cannot immediately

reject the hypothesis that, when taking action at in state st , the next state st+1 and reward rt+1 is

independent and identically distributed (iid), and this can be determined with statistical tests.

Many RL algorithms involve estimating value functions, which are functions of states (or state-

action pairs) that estimate how good, in terms of expected discounted return, it is for the agent to

be in a given state (or how good it is to perform a given action in a given state). As the rewards an

agent will expect in the future depend on the actions it will take, value functions are defined with

respect to policies (i.e., the mapping of states to actions). Roughly speaking, RL is about finding

the policy π∗ that achieves the highest reward over the long run, known as the optimal policy [199].

There are many RL algorithms, such as policy gradient methods [200], dynamic programming

methods [27], and Q-learning [220]. We describe the latter next.

2.3.1.2 Q-learning

Q-learning [220] is a model-free reinforcement learning algorithm, which falls under the class of

temporal difference methods [201, 198], where an agent tries an action at at a particular state st ,

and evaluates its effects in terms of the immediate reward rt+1 it receives and its estimate of the

22

value of the state st+1 to which it is taken. By repeatedly trying all actions in all states, it learns

which ones are best, i.e., it learns the optimal policy π∗, judged by long-term discounted return.

Q-learning uses a function Q that accepts a state st and action at , and outputs the value of that

state-action pair, which is the estimate of the expected value (discounted return) of doing action at

in state st and then following the optimal policy π∗ [122]. Its simplest form, one-step Q-learning,

is given by:

Q(st ,at) = Q(st ,at)+α[rt+1 + γmaxaQ(st+1,a)−Q(st ,at)] (2.3)

or, equivalently:

Q(st ,at) = (1−α)Q(st ,at)+α(rt+1 + γmaxaQ(st+1,a)) (2.4)

where 0 ≤ α ≤ 1 is the learning rate, and determines to what extent the new information will

override the old one. A factor of 0 will make the agent not learn anything, while a factor of 1 would

make the agent consider only the newly acquired information.

The Q-function above can be implemented using a simple lookup table. Nevertheless, when the

state-action space is large, e.g., continuous spaces, storing Q-values in a table becomes intractable.

The Q-function needs to be approximated by a function approximator. The compression achieved

by a function approximator allows the agent to generalize from states it has visited to states it has

not. The most important aspect of function approximation is not just related to the space saved, but

rather to the fact that it enables generalization over input spaces [178].

Q-learning tends to work well when the state space is large, can be naturally implemented in

an online fashion, and has the ability to learn without requiring a model of the environment [11,

199].

2.3.2 Related Work

Recent successes in deep reinforcement learning [153, 152] have made it increasingly popular

among the systems community. Applying RL to optimize systems covers a wide spectrum of

systems, in particular, deep reinforcement learning has been shown to vastly outperform traditional

23

heuristics in topics such as scheduling [148, 147], resource management [141], and data center

traffic optimization [47].

The work by Mirhoseini et al. [148] introduces a hierarchical model for placement of com-

putational graphs onto different hardware devices, such as CPUs and GPUs. They use deep re-

inforcement learning to learn graph operation assignments to groups and to allocate those groups

to available devices. Their agent is optimized for speed of computation and for feasibility, i.e., to

have sufficient memory available on each device for the computation assigned.

DeepRM [141] uses RL to train a neural network for multi-dimensional resource packing.

In particular, DeepRM uses policy gradient methods [200] to optimize various objectives such as

minimizing average job slowdown or completion time, and performs comparably to state-of-the-art

heuristics while being able to adapt to different conditions.

In AuTO [47], the authors propose using deep reinforcement learning for traffic optimizations

in data centers, specifically, flow scheduling and load balancing. Their system can adapt to volu-

minous, uncertain, and volatile data center traffic, while achieving operator-defined goals. Further,

the work by Boyan et al. [34] proposes Q-routing, an algorithm for packet routing, in which a

reinforcement learning module is embedded into each node of a switching network, where rout-

ing decisions lead to minimal delivery times when compared to non-adaptive algorithms based on

precomputed shortest paths.

Reinforcement learning-based techniques have also been used for adaptive video streaming. In

particular, Pensieve [142] trains a neural network using A3C [151], a state-of-the-art actor-critic

RL algorithm, to select bitrates for future video chunks based on observations collected by client

video players. Li et al. [134] proposes an end-to-end cooling control system also based on the actor

critic framework and an offline version of the deep deterministic policy gradient algorithm [135] to

minimize cooling consumption in data centers; an alternative approach to Google’s DeepMind [60].

24

3 | CURATOR

Modern cluster storage systems perform a variety of background tasks to improve the performance,

availability, durability, and cost-efficiency of stored data. For example, cleaners compact frag-

mented data to generate long sequential runs, tiering services automatically migrate data between

solid-state and hard disk drives based on usage, recovery mechanisms replicate data to improve

availability and durability in the face of failures, cost saving techniques perform data transforma-

tions to reduce the storage costs, and so on.

In this work, we present CURATOR, a background MapReduce-style execution framework for

cluster management tasks, in the context of a distributed storage system used in Nutanix enterprise

clusters. We describe CURATOR’s design and implementation, and evaluate its performance using

a handful of relevant metrics.

Finally, we propose augmenting CURATOR’s scheduler with an ML-based policy to decide

when to execute the management tasks, which can adapt to varying workload characteristics. In

particular, we use reinforcement learning to identify efficient execution policies. Our approach

leverages historical data from real clusters to speed up training, and shows performance improve-

ments over other baselines. For example, empirical evaluation on simulated workloads on real

clusters shows latency reductions of up to ∼20% when compared to a threshold-based approach.

25

In summary, the main contributions of this work are:

• We provide an extensive description of the design and implementation of CURATOR, an

advanced distributed cluster background management system, which performs, among oth-

ers, data migration between storage tiers based on usage, data replication, disk balancing,

garbage collection, etc.

• We present measurements on the benefits of CURATOR using a number of relevant metrics,

e.g., latency, I/O operations per second (IOPS), disk usage, etc., in a contained local envi-

ronment as well as in customer deployments and internal corporate clusters.

• Finally, we propose an ML-based policy to augment CURATOR’s scheduler. Our approach

uses reinforcement learning to decide when to trigger the background maintenance tasks and

leverages already-collected data from production clusters to accelerate training. Empirical

results on a storage tiering task demonstrate the benefits of our solution.

We structure this chapter as follows: Section 3.1 presents an overview of the cluster architecture

and introduces the data structures used to store the data and metadata in the storage system. Then,

we provide an extensive description of the design and implementation of CURATOR, together with

our reinforcement learning formulation in Section 3.2. We show evaluation results in Section 3.3

related work in Section 3.4, and summarize in Section 3.5.

3.1 Distributed Storage for Enterprise Clusters

We perform this work in the context of a distributed storage system designed by Nutanix for enter-

prise clusters. In this section, we provide an overview of the software architecture, the key features

provided by the storage system, and the data structures used to support them. Herein, we present

the necessary background information for understanding the design of CURATOR.

26

Figure 3.1: Cluster Architecture and Distributed Storage Fabric. UVMs access the storage devices

distributed across the cluster using CVMs [204].

3.1.1 Clusters Architecture

Nutanix is a well-known provider of enterprise cloud platforms. Their software architecture is

designed for clusters of varying sizes. They have cluster deployments at a few thousand different

customer locations, with cluster sizes typically ranging from a few nodes to a few dozens of nodes.

Cluster nodes might have heterogeneous resources, since customers add nodes based on need.

Their clusters support virtualized execution of (legacy) applications, typically packaged as

VMs. The cluster management software provides a management layer for users to create, start,

stop, and destroy VMs. Further, this software automatically schedules and migrates VMs taking

into account the current cluster membership and the load on each of the individual nodes. These

tasks are performed by a controller virtual machine (CVM) running on each node in the cluster.

The CVMs work together to form a distributed system that manages all the storage resources

in the cluster. The CVMs and the storage resources that they manage provide the abstraction of

a distributed storage fabric (DSF) that scales with the number of nodes and provides transparent

storage access to user VMs (UVMs) running on any node in the cluster.1

Figure 3.1 shows a high-level overview of the cluster architecture. Applications running in

1We use VMs and UVMs interchangeably throughout this thesis.

27

VMs access the DSF using legacy filesystem interfaces (such as NFS, iSCSI, or SMB). Operations

on these legacy filesystem interfaces are interposed at the hypervisor layer and redirected to the

CVM. The CVM exports one or more block devices that appear as disks to the VMs. These block

devices are virtual (they are implemented by the software running inside the CVMs), and are known

as vDisks. Thus, to the VMs, the CVMs appear to be exporting a storage area network (SAN) that

contains some disks on which the operations are performed.

Unlike SAN/NAS and other related solutions (e.g., OneFS [74], zFS [175], GlusterFS [89],

LustreFS [196], GPFS [181]), the cluster nodes serve as both VM compute nodes as well as storage

nodes. All user data (including the operating system) in the user VMs resides on these vDisks, and

the vDisk operations are eventually mapped to some physical storage device (SSDs or HDDs)

located anywhere inside the cluster.

Crucially, the cluster management software has a comprehensive view regarding cluster state

and thus can be instrumented to provide valuable measurement data. We can collect data regarding

resource utilization on different nodes and VMs (e.g., CPU, memory, storage), the number of VMs

running on a node, the I/O operations performed (since all data access is mediated by the cluster

storage layer), as well as cluster health attributes. We use this data in our study, collected from

different layers of the Nutanix cluster architecture.

3.1.2 Storage System and Associated Data Structures

We now describe the key requirements of the distributed storage fabric and how these requirements

influence the data structures used for storing the metadata and the design of CURATOR.

R1 Reliability/Resiliency: the system should be able to handle failures in a timely manner.

R2 Locality preserving: data should be migrated to the node running the VM that frequently

accesses it.

R3 Tiered Storage: data should be tiered across SSDs, hard drives, and the public cloud. Further,

the SSD tier should not merely serve as a caching layer for hot data, but also as permanent

28

storage for user data.

R4 Snapshot-able: the system should allow users to quickly create snapshots for greater robust-

ness.

R5 Space efficient: the system should achieve high storage efficiency while supporting legacy

applications and without making any assumptions regarding file sizes or other workload

patterns.

R6 Scalability: the throughput of the system should scale with the number of nodes in the

system.

The above set of requirements manifest in the design of CURATOR in two ways: 1) the set of

data structures that are used for storing the metadata, and 2) the set of management tasks that will

be performed by the system. We discuss the data structures below and defer the management tasks

performed by CURATOR to Section 3.2.3.

Each vDisk introduced in Section 3.1.1 corresponds to a virtual address space forming the in-

dividual bytes exposed as a disk to user VMs. Thus, if the vDisk is of size 1 TB, the corresponding

address space maintained is 1 TB. This address space is broken up into equal sized units called

vDisk blocks. The data in each vDisk block is physically stored on disk in units called extents.

Extents are written/read/modified on a sub-extent basis (also known as slice) for granularity and

efficiency. The extent size corresponds to the amount of live data inside a vDisk block; if the vDisk

block contains unwritten regions, the extent size is smaller than the block size (thus satisfying R5).

Several extents are grouped together into a unit called an extent group. Each extent and extent

group is assigned a unique identifier, referred to as extentID and extentGroupID respectively. An

extent group is the unit of physical allocation and is stored as a file on disks, with hot extent

groups stored in SSDs and cold extent groups on hard drives (R3). Extents and extent groups are

dynamically distributed across nodes for fault-tolerance, disk balancing, and performance purposes

(R1, R6).

29

Given the above core constructs (vDisks, extents, and extent groups), we now describe how the

system stores the metadata that helps locate the actual content of each vDisk block. The metadata

maintained by the storage system consists of the following three main maps:

• vDiskBlock map: maps a vDisk and an offset (to identify the vDisk block) to an extentID. It

is a logical map.

• extentID map: maps an extent to the extent group that it is contained in. This is also a logical

map.

• extentGroupID map: maps an extentGroupID to the physical location of the replicas of that

extentGroupID and their current state. It is a physical map.

Here are a few implications regarding the aforementioned data structures. Multiple vDisks

created through snapshots can share the same extent. The vDiskBlock map of a snapshot can

either directly point to an extent shared with a prior snapshot or have a missing entry, in which case

the vDiskBlock map of the previous snapshot is consulted. This facility allows for instantaneous

creation of snapshots, i.e., the system can create an empty vDiskBlock map entry and have it point

to the previous snapshot for all of its unfilled entries (R4). At the same time, it enables a later

optimization of metadata lookup using lazy filling of the missing entries. When a vDisk block is

updated on the new snapshot, a new extent is created to hold the updated data.

The level of indirection introduced by the extentID map allows efficient updates whenever data

from one extent group is relocated to another (e.g., to optimize access), as it is a single place in

which we store the physical extentGroupID in which the extent is located (thus aiding R2, R3).

Finally, a set of management operations can be performed by only consulting the extent-

GroupID map. For example, the system can detect (and repair) if the number of replicas for a

given extentGroupID falls under certain threshold by only accessing this map (the logical maps

will remain untouched), thus addressing R1.

Overall, the resulting data structures set up CURATOR to perform various management tasks in

an efficient and responsive manner.

30

3.2 System Design

This section describes the design of CURATOR, a system that safeguards the DSF’s health and

performance by executing background maintenance tasks. This section starts with a high-level

description of the goals that determined the design of CURATOR, and then provide details of its ar-

chitecture. We then present the tasks it performs, the policies under which those tasks are executed,

and demonstrate CURATOR’s value with a set of empirical results of clusters in the wild. Finally,

we propose a reinforcement learning-based formulation as a new scheduling policy for triggering

the maintenance tasks.

3.2.1 Goals

CURATOR is the cluster management component responsible for managing and distributing various

storage management tasks throughout the cluster, including continuous consistency checking, fault

recovery, data migration, space reclamation, and many others. CURATOR oversees the overall state

of cluster storage and takes actions as necessary.

CURATOR’s design is influenced by the following considerations:

• Scalable: The system should scale with the amount of storage served by the storage system

and cope with heterogeneity in node resources.

• Flexible and generic: The system should provide a flexible and extensible framework that

can support a broad class of background maintenance tasks.

• Non-interfering: CURATOR’s mechanisms should not interfere with nor complicate the op-

erations of the underlying storage fabric.

3.2.2 Components

Based on the above considerations, CURATOR’s design encompasses four key components and/or

concepts.

31

3.2.2.1 Distributed Metadata

The metadata (i.e., the maps introduced in Section 3.1.2) is stored in a distributed ring-like manner,

based on a heavily modified Apache Cassandra [123], enhanced to provide strong consistency for

updates to replicated keys. Paxos [124] is utilized in order to guarantee correctness.

The decision behind having the metadata distributed lies in the fact that the system should

not be bottlenecked by metadata operations. Although a distributed key-value store requires more

hard work from the perspective of processing the metadata, it provides a way to scale from small

clusters (say three nodes) to larger (hundreds of nodes) ones. However, many other commercial

storage products have decided to keep the metadata in a single node; we observe two main issues

with this approach: 1) special dedicated nodes for metadata cause a single point of failure, and

2) the vertical scale up requirement of such nodes—as the physical size of these storage nodes

increases with the number of logical entities, they will need to be replaced or upgraded in terms of

memory/CPU.

3.2.2.2 Distributed MapReduce Execution Framework

CURATOR runs as a background process on every node in the cluster using a master/slave architec-

ture. The master is elected using Paxos, and is responsible for task and job delegation. CURATOR

provides a MapReduce-style infrastructure [59] to perform the metadata scans, with the master

CURATOR process managing the execution of MapReduce operations. This ensures that CURA-

TOR can scale with the amount of cluster storage, adapt to variability in resource availability across

cluster nodes, and perform efficient scans/joins on metadata tables. Note that any metadata stored

in a distributed key-value store should be able to utilize this MapReduce framework.

Although this framework bears resemblance to some data-parallel engines, such as Hadoop

or Spark, the reason behind writing it from scratch instead of re-purposing an existing one was

two-fold: 1) efficiency, as most of these open-source big data engines are not fully optimized to

make a single node or a small cluster work efficiently, instead, they assume they will have enough

compute as their deployments tend to scale out, and 2) their requirement of a distributed storage

32

system (e.g., HDFS), a recursive dependence that Nutanix did not want to have in the clustered

storage system.

It is worth pointing out that having a background MapReduce process to do post-process/lazy

storage optimization allows to achieve better latencies for user I/O. While serving an I/O request,

the DSF does not have to make globally optimal decisions on where to put a piece of data nor what

transformations (compression, dedupe, etc.) to apply on that data. Instead, it could make decisions

based on minimal local context, which allows to serve user I/O faster. Later on, CURATOR in

the background would re-examine those decisions and make a globally optimal choice for data

placement and transformation.

3.2.2.3 Co-design of CURATOR with Underlying Storage System

The DSF provides an extended API for CURATOR, including but not limited to the following low-

level operations: migrate an extent from one extent group to another, fix an extent group so that it

meets the durability and consistency requirements, copy a block map from one vDisk to another,

and perform a data transformation on an extent group.

CURATOR only performs operations on metadata, and gives hints to an I/O manager service in

the storage system to act on the actual data. It is up to the storage system to follow CURATOR’s

advice, e.g., it may disregard a suggestion of executing a task due to heavy load or if a concurrent

storage system operation has rendered the operation unnecessary. CURATOR makes sure that the

I/O manager knows the version of metadata it based its decision on. The I/O manager checks

the validity of the operations based on metadata timestamps (for strong consistency tasks like

garbage collection) or last modified time (for approximate tasks such as tiering). This approach

also eliminates the need for CURATOR to hold locks on metadata in order to synchronize with the

foreground tasks; concurrent changes only result in unnecessary operations and does not affect

correctness.

33

3.2.2.4 Task Execution Modes and Priorities

During a MapReduce-based scan, the mappers and reducers are responsible for scanning the meta-

data in Cassandra, generating intermediate tables, and creating synchronous and asynchronous

tasks to be performed by the DSF. Synchronous tasks are created for fast operations (e.g., delete a

vDisk entry in the vDiskBlock metadata map) and are tied to the lifetime of the MapReduce job.

Conversely, asynchronous tasks are meant for heavy operations (e.g., dedupe, compression, and

replication) and are sent to the master periodically, which batches them, and sends them to the

underlying storage system for later execution (with throttling enabled during high load).

These tasks are not tied to the lifetime of the MapReduce job. Note that although these tasks

are generated based on a cluster-wide global view using MapReduce-based scans, their execution

is actually done in the individual nodes paced at a rate suitable to each node’s workload. The rate

depends on the CPU/disk bandwidth available at each node. In other words, the system computes

what tasks need to be performed in a bulk-synchronous manner, but executes them independently

(in any order) per node.

3.2.3 Management Tasks

In this section, we describe how CURATOR’s components work together to perform four main

categories of tasks. Table 3.1 includes a summary of the categories, tasks, and metadata maps

touched by each of the tasks.

3.2.3.1 Recovery Tasks

Disk Failure/Removal and Fault Tolerance In the event of a disk or node failure, or if a user

simply wants to remove/replace a disk, CURATOR receives a notification and starts a metadata

scan. Such a scan finds all the extent groups that have one replica on the failed/removed/replaced

node/disk and notifies the underlying storage system to fix these under-replicated extent groups to

meet the replication requirement. This is handled by the storage system as a critical task triggered

by a high-priority event, which then aims to reduce the time that the cluster has under-replicated

34

Category Task
Metadata Maps

vDiskBlock extentID extentGroupID

Recovery
Disk Failure/Removal x

Fault Tolerance x

Data Tiering x

Migration Disk Balancing x

Space Garbage Collection x x x

Reclamation Data Removal x x x

Compression x

Data Erasure Coding x

Transformation Deduplication x x x

Snapshot Tree Reduction x

Table 3.1: Metadata Tables accessed by Management Tasks

data. Note that these tasks require access to just the extentGroupID map and benefit from the

factoring of the metadata into separate logical and physical maps.

3.2.3.2 Data Migration Tasks

Tiering This task moves cold data from a higher storage tier to a lower tier, e.g., from SSD to

HDD, or from HDD to the public cloud. CURATOR is only involved in down migration, not up,

i.e., it does not migrate data from HDD to SSD, or from the public cloud to HDD. Up migration, on

the other hand, is done by the DSF upon repeated access to hot data. Taken together, the actions of

CURATOR and DSF aim to keep only the hottest data in the fastest storage tiers in order to reduce

the overall user access latency.

35

This task is costly as it involves actual data movement, not just metadata modifications. CURA-

TOR computes the “coldness” of the data during a metadata scan, and notifies the DSF to perform

the actual migration of the coldest pieces. The coldness is computed based on least recently used

(LRU) metrics. Failing to execute the tiering task can (and surely will) lead to performance degra-

dation in the long run.

The cold data is identified by the modified time (mtime) and access time (atime), retrieved dur-

ing a scan. Both mtime (write) and atime (read) are stored in different metadata maps. The former

is located in the extentGroupID map, whereas the latter resides in a special map called extentGroup-

IDAccess map. This latter access map was especially created to support eventual consistency for

non-critical atime data (in contrast to the extentGroupID map’s strict consistency requirements)

and thereby improve access performance. As a consequence of being stored in separate maps, the

mtime and atime of an extent group might be located in different nodes, therefore, communication

may be required to combine these two attributes.

In order to compute the “coldness” of the data, a MapReduce job is triggered to scan the

aforementioned metadata maps. The map tasks emit the extentGroupID as key, and the mtime

(or atime) as value. The reduce tasks perform a join-like reduce based on the extentGroupID key.

The reduce tasks generate the (egid, mtime, atime) tuples for different extent groups and sort these

tuples to find the cold extent groups. Finally, the coldest extent groups are sent to the DSF for the

actual data migration.

Disk Balancing This task moves data within the same storage tier, from high usage disks to low

usage ones. The goal is to bring the usage of disks within the same tier, e.g., the SSD tier, as close

as possible to the mean usage of the tier. This task not only reduces the storage tier imbalance, but

also decreases the cost of replication in the case of a node/disk failure. To minimize unnecessary

balancing operations, CURATOR does not execute the balancing if the mean usage is low, even if

the disk usage spread is high. In case it executes the balancing, as with tiering, it only attempts to

move cold data. The MapReduce scans identify unbalanced source and target disks, together with

cold data, and notifies the storage fabric to perform the actual migration of extent groups.

36

3.2.3.3 Space Reclamation Tasks

Garbage Collection There are many sources of garbage in the storage system, e.g., when an

extent is deleted but the extent group still has multiple live extents and cannot be deleted, garbage

due to wasting preallocated larger disk spaces on extent groups that became immutable and did

not use all of the allocated quota, when the compression factor for an extent group changes, etc.

Garbage collection increases the usable space by reclaiming garbage and reducing fragmentation.

It does so in three ways:

1. Migrate Extents: migrate live extents to a new extent group, delete the old extent group, and

then reclaim the old extent group’s garbage. It is an expensive operation as it involves data

reads and writes. Therefore, CURATOR performs a cost-benefit analysis per extent group and

chooses for migration only the extent groups where the benefit (amount of dead space in the

extent group) is greater than the cost (sum of space of live extents to be migrated).

2. Pack Extents: try to pack as many live extents as possible in a single extent group.

3. Truncate Extent Groups: reclaim space by truncating extent groups, i.e., reducing their size.

Data Removal The data structures introduced in Section 3.1.2 are updated in such a way that

there cannot be dangling pointers, i.e., there cannot be a vDisk pointing to an extent that does

not exist, or an extent pointing to an extent group that does not exist. However, there can be

unreachable data, e.g., an extent that is not referenced by any vDisk, or an extent group that is

not referenced by any extent. These could be due to the side-effects of vDisk/snapshot delete

operations or a consequence of failed DSF operations.

In DSF, extent groups are created first, then extents, and finally vDisks. For removal, the pro-

cess is backwards; unused vDisks are removed first, then the extents, and finally the unreferenced

extent groups. This task performs the removal process in stages (possibly in successive scans), and

enables the reclamation of unused space in the system. Note that only the deletion of extent groups

frees up physical space.

37

3.2.3.4 Data Transformation Tasks

Compression and Erasure Coding CURATOR scans the metadata tables and flags an extent

group as a candidate for compression/coding if the current compression of the extent group is

different from the desired compression type or if the extent group is sufficiently cold.

Once CURATOR identifies the extent groups (thus extents) for compression/coding, it sends a

request to the DSF, which performs the actual transformation by migrating the extents. The main

input parameters of this request are the set of extents to be compressed (or migrated), and the

extentGroupID into which these extents will be migrated. If the latter is not specified, then a new

extent group is created. This API allows to pack extents from multiple source extent groups into

a single extent group. Also, instead of always creating a new extent group to pack the extents,

CURATOR can select an existing extent group and pack more extents into it. The target extent

groups are also identified using MapReduce scans and sorts.

Deduplication Dedupe is a slightly different data transformation, as it involves accessing other

metadata maps. During a scan, CURATOR detects duplicate data based on the number of copies that

have the same precomputed fingerprint, and notifies the DSF to perform the actual deduplication.

Snapshot Tree Reduction The underlying storage system supports snapshots, which are im-

mutable lightweight copies of data (similar to a simlink), and can therefore generate an instanta-

neous copy of a vDisk. Every time the system takes a snapshot, a new node is added to a tree,

called the snapshot tree, and the vDisk metadata is inherited. Snapshot trees can become rather

deep. In order to be able to read a leaf node from a tree, the system needs to traverse a sequence

of vDiskBlock map entries. The bigger the depth of a tree, the more inefficient the read operation

becomes. To address this, the snapshot tree reduction task “cuts” the snapshot trees, by copying

vDiskBlock map metadata from parents to child nodes. There are two flavors, partial and full, and

their use depends on whether we need vDisk metadata only from some ancestors (partial) or from

all of them (full). Once the copy is done, the child vDisks have all the information needed for direct

reads, i.e., there is no need to access the ancestors’ metadata, thus, the read latency is reduced.

38

3.2.4 Scheduling Policies

The tasks described above are executed based on (roughly) four different policies.

Event-driven These tasks are triggered by events. For example, whenever a disk or node fails, a

recovery task is executed, no matter what. These are critical, higher priority tasks.

Threshold-based These are dynamically executed tasks based on fixed thresholds violations.

For example, when the tier usage is “high”, or the disk usage is “too” unbalanced, etc. We provide

both examples below.

In order to be eligible for the tiering task, the storage tier usage from where CURATOR wants to

down migrate the data should exceed a certain (preconfigured) threshold. Similarly, in order to be

considered for balancing, the mean tier usage and the disk usage spread should both exceed certain

thresholds. The disk usage spread is defined as the difference between the disk with maximum

usage and the disk with minimum usage within the tier.

Periodic Partial We next consider tasks that are neither triggered nor threshold-driven, and ac-

cess only a subset of the metadata maps. These tasks are executed every h1 hours, and are grouped

based on the metadata tables they scan.

Periodic Full All tasks are executed as part of a full scan every h2 hours. This policy is called full

as it scans all three metadata tables in Cassandra, the vDiskBlock, extentID, and extentGroupID

maps. Because the partial scan only works on a subset of the metadata maps, it can run more

frequently than the full scan, i.e., h1 < h2. In general, scans are expensive, hence, when a scan is

running, CURATOR tries to identify as many asynchronous tasks as possible and lets them drain

into the DSF over time. In other words, CURATOR combines the processing that must be done for

the different tasks in order to reduce the scans’ overheads.

39

3.2.5 Measurements

In this section, we measure CURATOR’s effectiveness with respect to a number of relevant metrics.

We report results on three different settings: 1) customer clusters, where CURATOR is always

turned on, 2) internal corporate production clusters, where CURATOR is also on, and 3) an internal

local cluster, where we enable/disable CURATOR to perform controlled experiments.

3.2.5.1 Customer and Corporate Clusters

We leverage historical data from a number of customer clusters to assess CURATOR capabilities. In

particular, we use ∼50 clusters over a period of two and a half months (June to mid August 2016)

to demonstrate CURATOR’s contributions to the overall cluster resiliency and data migration tasks.

We also collect data from ten internal corporate clusters over a period of three days. These clusters

are very heterogeneous in terms of load and workloads, as they are used by different development

teams to (stress) test diverse functionalities.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Under Replicated Data / Total Capacity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 C

lu
st

er
s

Figure 3.2: Under-Replicated/Total Storage

0 1 2 3 4 5 6 7
Garbage / Total Capacity (%)

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 C

lu
st

er
s

Figure 3.3: Garbage/Total Storage

Recovery Figure 3.2 shows the cumulative distribution function (CDF) of the average under-

replicated data as a percentage of the overall cluster storage capacity (in log-scale) in the customer

clusters sample. We observe that around 60% of the clusters do not present any under-replication

40

problem. Further, 95% of the clusters have at most an average of 0.1% under-replicated data.

For further confirmation, we accessed the availability cases of the 40% of clusters from Fig-

ure 3.2 that reported under-replication. Note that we have access to a database of cases information

corresponding to various issues encountered in real clusters, where we can query using different

filters, e.g., availability problems, etc. We considered only those cases for the clusters that were

opened within 2 weeks of the under-replication event (as indicated by the metric timestamp), and

looked for unplanned down time in those clusters. We did not find any unplanned down time in

such clusters, which suggests that CURATOR ensured that replication happened upon detecting the

under-replication event so that there was no availability loss.

Garbage Collection Figure 3.3 also illustrates the CDF of the (P95) percentage of garbage with

respect to the total storage capacity (in log-scale) in the corporate clusters sample. We observe that

90% of the clusters have less than 2% of garbage, which confirms the usefulness of the garbage

collection task.

0 20 40 60 80 100
Usage (%)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 C

lu
st

er
s

SSD
HDD

Figure 3.4: SSD and HDD Usage

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Max / Mean Usage (%)

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n
of
 C
lu
st
er
s

SSD
HDD

Figure 3.5: Max/Mean SSD and HDD Usage

Tiering Figure 3.4 shows the CDF of SSD and HDD usage in customer clusters. We observe

that 40% of the clusters have a SSD usage of at most ∼70-75%. From the remaining 60% of the

clusters, many of them have 75% SSD usage, which indicates that the tiering task is doing its job;

41

the default threshold for tiering is set to 75% in all of these customer clusters, and data has been

down-migrated so that the SSDs can absorb either new writes or allow for up-migration of hot data.

In the other 10% of the clusters, the SSD usage is slightly higher, which means that although the

tiering task is being executed, it cannot entirely cope with such (storage-heavy) workloads. We

also note that HDD utilization is typically less, with 80% of clusters having less than 50% HDD

usage.

Disk Balancing Figure 3.5 validates disk balancing in the corporate clusters sample. We plot

maximum over mean usage ratio, for both SSDs and HDDs. We observe that in 60% (SSDs) and

80% (HDDs) of the cases, the maximum disk usage is almost the same as the mean.

3.2.5.2 Internal Cluster

We are interested in measuring the costs incurred by CURATOR as well as the benefits it provides,

with respect to a “CURATOR-less” system, i.e., we want to compare the cluster behavior with

CURATOR enabled and when it is disabled. Given that we cannot toggle CURATOR status (ON-

OFF) in customer deployments, in this section, we do so in an internal test cluster. We provide a

summary of our findings in Table 3.2.

Metric (Average)
Curator

OFF ON

Benefits
Latency (ms) 61.73 12.3

Storage Usage (TB) 3.01 2.16

Costs

CPU Usage (%) 14 18

Memory Usage (%) 14.7 14.7

of IOPS 1173 1417

Table 3.2: Benefits/Costs Summary

42

Workloads We use flexible I/O tester [18] to generate the exact same workloads for testing both

settings, i.e., when CURATOR is ON and OFF. We re-image the cluster to the same initial clean

state when we toggle CURATOR status.

We simulate three online transaction processing (OLTP) workloads, small, medium, and large,

which we execute sequentially as part of a single run. Each of these workloads go over three phases,

prefill, execution, and destroy. In the prefill stage, they create their own user virtual machines

(UVMs), together with their associated vDisks. After the prefill phase is done, they proceed to

execution, where the actual workload operations (reads and/or writes) are executed. Following

execution, the destroy stage begins, where the UVMs and associated vDisks are destroyed, i.e., the

vDisks’ space can be reclaimed.

OLTP Workload
Data Log

Size (GB) IOPS Size (GB) IOPS

small 800 4000 16 200

medium 1120 6000 16 300

large 1120 8000 12 400

Table 3.3: OLTP Workloads

Each workload is composed of two sections, data and log, which emulates the actual data space

and log writing separation in traditional DBMSes. The data section performs random reads and

writes, whereas the log section is write only. The three workloads only differ on how much data

they read/write, and the number of IOPS, as shown in Table 3.3.

Benefits In terms of benefits, we consider latency and storage usage, which mainly highlight the

benefits of the tiering and space reclamation tasks. Figure 3.6 shows SSD and HDD usage over

time for both CURATOR ON and OFF. We observe that SSD and HDD usage when CURATOR is

OFF follows a non-decreasing pattern. When SSDs get full (∼125 minutes), all the data starts

being ingested directly into HDDs.

43

0 100 200 300 400 500
Time (minutes)

0

20

40

60

80

100

Us
ag

e
(%

)
ON

SSD
HDD

OFF
SSD
HDD

Figure 3.6: SSD and HDD Usage with CURATOR ON and OFF

Instead, when CURATOR is ON, we see the effects of tiering, where colder data is moved to

HDDs when the default usage threshold is surpassed (75%). Even though tiering kicks in “on

time”, the data ingestion rate is so high that the task cannot entirely cope with it, therefore, we

observe SSD usage percentages in the 90’s. At the end, we see that it reaches the 70’s.

Figure 3.6 also illustrates the benefits of garbage collection and data removal tasks. When

CURATOR is disabled, we observe a 96% SSD and 23% HDD usage (∼5 TB) at the end of the

run, whereas, when CURATOR is enabled, we see a 76% SSD and 6% HDD usage (∼2.27 TB).

The average storage usage over the whole run is ∼2 TB and ∼3 TB for CURATOR ON and OFF

respectively. These differences are mainly due to the data removal task. As described above, the

destroy phase of each workload, where UVMs and associated vDisks are destroyed, allows the data

removal task to kick in and start the data removal process, allowing huge storage savings.

Regarding latency, we see an average of ∼12 ms when CURATOR is ON, and ∼62 ms when is

OFF. We measure these values on the execution phase of the workloads. As time progresses, the

latencies increase when CURATOR is disabled. We speculate this is due to the fact that the newest

ingested data goes directly into HDDs, as SSDs are already full, thus, high latency penalties are

paid when reads/writes are issued.

44

Costs Regarding costs, we consider CPU and memory usage, as well as the number of I/O op-

erations performed. From Table 3.2, we see that the number of IOPS executed is higher when

CURATOR is ON, as many of its tasks require reading and writing actual data. Still, the overall

average IOPS when CURATOR is enabled lies in the same ballpark as the disabled counterpart,

∼1400 as opposed to ∼1150 when CURATOR is OFF.

We also notice that when CURATOR is ON, the CPU usage is slightly higher. This is due to

CURATOR internals, i.e., its MapReduce infrastructure. Although the mappers primarily scan the

metadata (mostly I/O intensive), the reducers involve significant logic to process the scanned in-

formation (mostly CPU intensive). Even though the average CPU usage is higher when CURATOR

is enabled, 18% as opposed to 14%, the value is still in an acceptable range. Regarding memory

usage, we do not see a difference between both versions of the system, as shown in Table 3.2.

3.2.6 Reinforcement Learning-based Approach

We have described so far an overview of the distributed storage fabric and delved further into

CURATOR’s design and implementation, its tasks and policies of execution, etc. In this section,

we propose augmenting CURATOR with ML-based scheduling policies. In particular, we leverage

the reinforcement learning framework described in Section 2.3, for deciding when to trigger the

tiering task. Although our efforts are on the tiering task, our approach generalizes to any of the

threshold-based tasks described before.

We start the section with the motivation for the modeling. Then, we delve into more details

on the reinforcement learning formulation and the challenges we face when applying RL to our

setting and how we address those challenges in our work.

3.2.6.1 Why Reinforcement Learning?

We observed a wide heterogeneity of workloads across the cluster deployments. Given these dis-

tinct characteristics of workloads, we noted that generic threshold-based execution policies were

not optimal for every cluster, nor for individual clusters over time, as some of them experienced

different workloads at different times.

45

Further, we realized that almost no cluster operator changes the default target threshold of

75% SSD utilization used to trigger the tiering task. For many of the clusters, especially the ones

executing mainly read-like workloads, this means that they are wasting 25% of fast SSD storage.

Thus, in order to efficiently execute CURATOR’s tiering task we need to build “smarter” policies

that can adapt over time.

The traditional way to improve performance is to use profiling in order to tune certain parame-

ters at the beginning of a cluster deployment. Nevertheless, simple profiling would not easily adapt

to the varying loads (and changing workloads) the clusters are exposed to over their lifetimes. We

would need to run profilers every so often, and we would discard, in some sense, prior knowledge.

As we do not have a labeled training set, but rather only partial information of what happened

when executing the tiering task using the sub-optimal threshold-based policy, we need a model

that embraces the notion of exploration, i.e., try things out to gather information about the world.

To make matters worse, moving cold data from SSDs to HDDs typically exhibits non-immediate

feedback and current decisions may impact performance over a long time, e.g., on subsequent

expected or non-expected data accesses. In other words, a future system state in a sequence of

states is not necessarily independent of the states that came before it.

We therefore need a model that incorporates both exploration and the ability to work well in

settings with non-immediate feedback, where a current decision can have a long-term impact. One

such powerful model is reinforcement learning, as described in Section 2.3.

3.2.6.2 State-Actions-Reward

Herein, we outline how we apply reinforcement learning to our problem setting. In order to apply

reinforcement learning to schedule storage maintenance tasks, in this case, the storage tiering task,

we need to define the set of features that represent the states x, the set of possible actions A , and

the reward function.

State We represent states using cluster-level information collected by the cluster management

software. Recall that the controller VMs have a comprehensive view regarding cluster state, thus

46

they can be instrumented to provide measurement data. In particular, we use cluster CPU usage,

memory usage, storage utilization metrics (e.g., SSD usage), number of read/write I/O operations

per second, etc.

Actions We restrict the set of actions to two: either run or not-run the task.

Reward Regarding the reward function, we use the average cluster latency. As higher rewards

are better, though we prefer lower latencies, we actually use negative latencies. The choice of using

negative latencies is rather arbitrary, we could have used their reciprocals instead.

3.2.6.3 Generalization and Compression

Given that our state-action space is large, we cannot use a tabular reinforcement learning imple-

mentation, as described in Section 2.3. We therefore resort to a function approximator, and not

only gain from its compression benefit but also from its power towards generalization.

Many approximators have been studied in the past, such as decision trees [168], neural net-

works [153, 152], linear functions [58, 207], and kernel-based methods [159]. In this work, we

choose linear models. The reason behind this decision is two-fold: 1) we observe that it works

reasonably well in practice, and 2) we do not have access to enough training data to bootstrap (or

pre-train) more complex models in an offline manner before we deploy our agents—as we shall

see next.

3.2.6.4 Faster Training: Bootstrapping

Another key aspect to take into account when training reinforcement learning agents is related to

the long time it usually takes them to converge. In other words, it may take a long time before the

state space is explored enough so that the agents can start making the “right” decisions. Therefore,

we need some strategy to improve their data efficiency if we plan to use them for our storage tiering

task in real clusters.

47

In practice, incorporating prior knowledge, even if incomplete, before the agent is deployed,

might help to speed up learning and reduce the amount of interactions with the real environment,

which may be limited and costly [15, 156, 122]. Given that we have access to real traces from

production clusters, we leverage that already-collected data to pre-train our agents in an offline

manner, so as to accelerate training as well as help towards generalization (i.e., the agents would

have access to a broad set of data from different clusters). Note that even though we use data

sampled from the (sub-optimal) threshold-based policy to “boostrap” our agents, it is still useful to

reach “good” states sooner.

3.3 Evaluation

In this section, we evaluate our RL-based scheduler, and compare it to the threshold-based solution

currently deployed in Nutanix clusters.

3.3.1 Setup

Cluster We use an internal cluster to run our experiments. The cluster consists of 4 SSDs and

8 HDDs, for a total storage size of ∼1.85 TB for SSDs and ∼14 TB for HDDs.

Workloads We use flexible I/O tester [18] to generate the workloads. We run the following five

synthetic workloads in our experiments:

• oltp: performs random reads and writes, 50% reads and 50% writes. Further, 10% of its I/O

operations, either reads or writes, have 32k block sizes, and 90% 8k blocks. It has a working

set size of 1120 GB, and performs 8000 IOPS. With this workload we intend to simulate a

standard database workload.

• oltp-skewed: similar to oltp, but is read-only. It performs 8k block random reads according

to the following distribution: 90% of the accesses go to 10% of the data. It has a working

set size of 4480 GB, and performs 32000 I/O operations per second. With this workload we

aim to better understand the effects of hot data skewness.

48

• oltp-varying: alternates between oltp versions that perform 6000 and 4000 IOPS every 20

minutes. In this case, we aim to simulate varying loads of the same type of workload within

a cluster.

• oltp-vdi: runs the oltp workload in one node while the remaining nodes execute VDI-like

workloads in 100 VMs each. A VDI-like workload consists of a working set size of 10 GB,

with 80% reads and 20% writes. The total number of IOPS per VM is 26. Here, the idea is

to simulate (concurrent) heterogeneous workloads within a cluster.

• oltp-dss: alternates between an oltp version that perform 6000 IOPS and a decision support

system (DSS) workload every 20 minutes. The DSS workload is read-only, with a working

set size of 448 GB. 100% of the reads are sequential, the reads are 1 MB, and the total number

of IOPS is 2880. In this case, we attempt to simulate that the workload itself changes over

time.

Dataset In order to speed up training in the real cluster, we build a dataset from a subset of the

50 customer clusters introduced in Section 3.2.5 to bootstrap our agent. In particular, we use ∼40

clusters, from which we have fine-grained information to represent states, actions, and rewards.

The data consists of ∼32k transitions, sampled from the (sub-optimal) threshold-based policy.

Every cluster was using the same default threshold (75%) for running the tiering task. We split the

dataset into training (80%) and test (20%) sets, and do 3-fold cross validation (with grid search) in

the training set for hyper-parameter tuning. We standardize the features by removing the mean and

scaling to unit variance.

Reinforcement Learning We use Q-learning, described in Section 2.3.1.2, as our reinforcement

learning algorithm, and two linear models as function approximators, one for each action. We train

them with stochastic gradient descent [33], with l2 regularization, and the squared loss.

Once deployed, the bootstrapped agent keeps on learning by interacting with the environment.

We use the popular ε-greedy strategy, i.e., with probability ε the agent selects a random action, and

49

with probability 1−ε the agents selects the action it currently thinks is the best. We use ε = 0.2 in

all our experiments. Further, we set the discount factor γ = 0.9.

3.3.2 Results

3.3.2.1 Summary

We present a summary of the results for the five different workloads described above in Table 3.4.

The experiments are within the order of few hours.

We observe that in all of the cases our Q-learning solution reduces the average latency, from

∼2% in the oltp-varying workload, up to ∼20% in the oltp-skewed one, as well as improves the

total number of SSD bytes read. We believe that further improvements could also be achieved by

adding more features to the states, e.g., temporal features, HDD usage, etc. We also notice that

Q-learning demands more IOPS. This is the case since our solution, in general, triggers more tasks

than the baseline, thus more I/O operations are performed. Overall, we see that our approach can

trade manageable penalties in terms of number of IOPS for a significant improvement in SSD hits,

which further translates into significant latency reductions, in most of our experimental settings.

3.3.2.2 SSD Reads

Figure 3.7 shows the evolution of SSD reads for the oltp and oltp-skewed workloads. We observe

that our method based on Q-learning performs on average more SSD reads (∼8 GB and ∼24 GB

respectively) than the baseline for both workloads, which is a consequence of performing more

tiering operations during periods when the offered load from applications is low.

3.3.2.3 Q-learning in Practice

We now provide performance data corresponding to a sample scenario and illustrate how the Q-

learning model operates in practice. Figure 3.8 shows the IOPS, latency, and scheduling decisions

made while executing the oltp-dss workload with our RL-based scheduler. Our system polls the

state of the cluster every 30 seconds, if it had not triggered tiering recently, in order to assess

50

Workload Metric

Policy

fixed
q-learning

threshold

oltp
Avg. Latency (ms) 12.48 10.60

SSD Reads (GB) 31.68 39.16

Avg. # of IOPS 2551.54 2903.20

oltp-skewed
Avg. Latency (ms) 18.55 14.91

SSD Reads (GB) 151.99 176.28

Avg. # of IOPS 6686.90 7221.01

oltp-varying
Avg. Latency (ms) 17.28 16.95

SSD Reads (GB) 469.28 488.17

Avg. # of IOPS 7884.94 8192.32

oltp-vdi
Avg. Latency (ms) 15.41 13.92

SSD Reads (GB) 40.83 41.27

Avg. # of IOPS 4450.18 5178.13

oltp-dss
Avg. Latency (ms) 61.65 53.00

SSD Reads (GB) 4601.17 6233.33

Avg. # of IOPS 3105.60 3239.59

Table 3.4: Results Summary

51

0 10 20 30 40 50 60 70 80
SSD Reads (GB)

0

2

4

6

8

10

Ti
m

e
(m

in
ut

es
)

OLTP
Threshold
RL

OLTP-Skewed
Threshold
RL

Figure 3.7: SSD Reads in OLTP and OLTP-SKEWED Workloads

whether tiering should be performed. After a tiering task is triggered, we wait for 5 minutes before

making a new decision, as we do not want to schedule tiering tasks back-to-back. Regarding the

scheduling plot, we not only include the two choices the algorithm makes, but also differentiate

whether its decision was due to exploitation (solid lines) or exploration (dashed lines).

The workload keeps on alternating between OLTP and DSS workloads every 20 minutes. It

starts with the former, continues with the latter, and so on. We observe that the OLTP workload, in

general, demands more IOPS than the DSS one, and also achieves lower latencies (cyclic behavior).

At the beginning, even with high IOPS and low latency, the algorithm thinks that the best option

is to trigger tiering (0-20 minutes). When the DSS workload commences (early 20s), the algorithm

still keeps scheduling tiering tasks. In this case, it makes more sense as the cluster utilization is not

too high but the latency is. Around minute 44, the algorithm explores the state space by not running

tiering (dashed orange line that almost overlaps the solid orange ones that follow). Given that this

exploration seems to have found a “nice state” with low latency, it considers the best option is

to not to run tiering (first chunk of solid orange lines around minute 45). Note that given our 30

seconds polling interval when we do not run tiering, these lines seem to overlap.

At approximately the 47th minute, the algorithm performs an exploration that triggers tiering

52

0
1000
2000
3000
4000
5000
6000

IO
PS

0
20
40
60
80

100
120

La
te
nc
y
(m

s)

0 25 50 75 100 125 150 175 200
Time (minutes)

Sc
he

du
lin
g

De
cis

io
n

Run Exploit
No Run Exploit

Run Explore
No Run Explore

Figure 3.8: OLTP-DSS Workload using Q-learning

(dashed blue line). It does not work out, as later on, the best decisions are still not to run tiering

(solid orange lines around minutes 52-54). Around minute 63, when DSS commences again, the

algorithm thinks it is best to run tiering. At this point, the cluster is not very utilized, i.e., low

IOPS, but the latency is high.

The key thing to notice is that the algorithm seems to be learning that when the cluster is highly

utilized (high IOPS) and the latency is low, it should not trigger tiering. During the first period

(0-20mins), it was not aware of that, thus it ran tiering, but later on, it started to figure it out (e.g.,

53

40-60mins and 80-100mins periods). Even more noticeable is between the period 160-180mins,

where we observe many solid red lines (which appears as a single thick one due to the 30 seconds

interval). The 120-140mins period is somewhat surprising. We would have expected more solid

orange lines there, but they only start appearing towards the end of the period. We believe the

algorithm makes early mistakes (minutes 123 and 128), and given that we wait for 5 minutes after

running tiering, it can only realize later on (∼133), where it decides that it is actually better not to

run.

3.4 Related Work

We present related work in the areas of storage and distributed systems as well as scheduling.

Storage and Distributed Systems CURATOR borrows techniques from prior work on cluster

storage and distributed systems, but it composes them in new ways to address the unique charac-

teristics of the Nutanix cluster setting. Note that this setting corresponds to clusters where nodes

are heterogeneous and can be equipped with fast storage technologies (SSDs, NVMe, etc.), and

unmodified (legacy) client applications are packaged as VMs. Given this setting, the system was

designed for client applications to run on the same nodes as the storage fabric, metadata is dis-

tributed across the entire system, and faster storage on cluster nodes is effectively used. We now

contrast CURATOR [42] with other related work given these differences in execution settings and

design concepts.

Systems such as GFS [88] and HDFS [187] are designed for even more scalable settings but are

tailored to work with applications that are modified to take advantage of their features (e.g., large

file support, append-only files, etc.). Further, they do not distribute metadata, since a single node

can serve as a directory server given the use of large files and infrequent metadata interactions.

These systems do not take advantage of fast storage—all file operations involve network access

and the incremental benefits of fast storage on the server side is minimal.

Cluster storage systems such as SAN and NAS also do not co-locate application processes/VMs

with servers. They assume a disaggregated model of computing, wherein applications run on

54

client machines and all the data is served from dedicated clusters [74, 175, 89, 196, 181]. These

systems provide scalability benefits and a wide variety of features, such as snapshotting [73], which

CURATOR borrows as well. But the crucial points of differentiation are that Nutanix system uses

fast local storage effectively through tiering, data migration, and disk balancing. Moreover, we

believe that Nutanix solution is the first system to run a continuous consistency checker which

results in significant reductions in downtime.

A number of concepts and solutions from distributed systems are used: 1) MapReduce [59] to

perform cluster-wide computations on metadata, 2) Cassandra [123] to store distributed metadata

as a key-value store, and 3) Paxos [124] to perform leader election for coordination tasks. Interest-

ingly, MapReduce is not a client application running on top of the storage system but rather part of

the storage system framework itself.

Scheduling In recent years, there has been an increasing amount of literature on applying ma-

chine learning techniques to improve scheduling decisions in a wide variety of areas, such as

manufacturing [166, 165, 154, 230, 19], sensor systems [121], multicore data structures [71], au-

tonomic computing [223], operating systems [77], computer architecture [103], etc. For example,

in Paragorn [65] the authors propose a model based on collaborative filtering to greedily schedule

applications in a manner that minimizes interference and maximizes server utilization on clusters

with heterogeneous hardware. Their work focuses more on online scheduling of end-user work-

loads, whereas ours, concentrates on the background scheduling of cluster maintenance tasks to

improve the overall cluster performance.

Wrangler [227] proposes a model based on support vector machines [52] to build a scheduler

that can selectively delay the execution of certain tasks. Similar to our task scheduling study, they

train a linear model based on CPU, disk, memory, as well as other system-level features, in an

offline manner, and then deploy it to make better scheduling decisions. In contrast, our offline

trained model only “bootstraps” the reinforcement learning one, which keeps on adapting and

learning at runtime, i.e., in an online manner.

Quincy [104] introduces a flexible framework for scheduling distributed jobs. The authors use a

55

graph to frame the scheduling problem, where edge weights encode competing jobs demands (e.g.,

fairness), and a standard solver computes the optimal schedule according to a cost model. Smart

Locks [72] is a self-tuning spin-lock mechanism that uses reinforcement learning to optimize the

order and relative frequency with which different threads get the lock when contending for it. They

use a somewhat similar approach to our CURATOR study, though they target scheduling decisions

at a much lower level.

Perhaps the most similar line of work comes from optimal control [138, 1, 2, 3]. The papers by

Prashanth et al. [1, 2] propose using RL for tuning fixed thresholds on traffic light control systems.

They propose a Q-learning model that adapts to different traffic conditions (e.g., queue lengths

on the lanes, daytime, etc.) in order to switch traffic light signals (green/yellow/red). We use a

similar approach but in a different setting, where we tune static thresholds to better schedule data

migration in a multi-tiered storage system.

3.5 Summary

Current cluster storage systems are built-in with a wide range of functionality that allows to main-

tain and improve the storage system’s health and performance. In this work, we presented CURA-

TOR, a background self-managing layer for storage systems in the context of a distributed storage

fabric used in enterprise clusters. We described CURATOR’s design and implementation, its man-

agement tasks, and how the choice of distributing the metadata across several nodes in the cluster

made CURATOR’s MapReduce infrastructure necessary and efficient.

Given the high heterogeneity we observed across clusters, we focused our attention on building

smarter task scheduling policies. In particular, we proposed to augment CURATOR with an ML-

based policy that uses reinforcement learning to address the issue of when the management tasks

should be executed. Our approach leverages historical traces from real clusters to speed up training

and evaluation on simulated workloads in a real cluster achieved up to∼20% latency improvements

over a threshold-based approach.

56

4 | ADARES

Virtual execution environments allow for consolidation of multiple applications onto the same

physical server, thereby enabling more efficient use of server resources. However, users often stat-

ically configure the resources of virtual machines through guesswork, resulting in either insufficient

resource allocations that hinder VM performance, or excessive allocations that waste precious data

center resources. In this work, we first characterize real-world resource allocation and utilization

of VMs through the analysis of an extensive dataset, consisting of more than 250k VMs from over

3.6k private enterprise clusters.

Our large-scale analysis confirms that VMs are often misconfigured, either overprovisioned or

underprovisioned, and that this problem is pervasive across a wide range of private clusters. We

then propose ADARES, an adaptive system that relies on a ML-based mechanism to dynamically

adjusts VM resources in distributed virtual environments. Our system uses the contextual bandits

framework, exploits easily collectible data, at the cluster, node, and VM levels, to make more

sensible allocation decisions, and leverages transfer learning to safely explore the configurations

space and speed up training.

Empirical evaluation shows that ADARES can significantly improve system utilization without

sacrificing performance. For instance, when compared to threshold and prediction-based baselines,

it achieves more predictable VM-level performance and also reduces the amount of virtual CPUs

and memory provisioned by up to 35% and 60% respectively for synthetic workloads on real clus-

ters.

57

In summary, the main contributions of this work are:

• We present a large-scale study of VM resource allocations and usage within thousands of en-

terprise clusters, which enables us to characterize the overprovisioning, underprovisioning,

and variation in resource utilization over time that occurs in this context.

• We propose, design, and implement ADARES, an adaptive system capable of tuning VM

resources to increase overall system efficiency that is compatible with existing cluster sched-

ulers.

• Finally, we propose an ML-based mechanism that uses contextual bandits to drive the re-

source adjustments and leverages transfer learning to speed up training. We instantiate our

model with an appropriate formulation that results in more efficient resource allocations in

real clusters.

We structure this chapter as follows: Section 4.1 presents the large-scale measurement study

of VM resource allocation within hundreds of enterprise clusters, where we show significant over-

provisioning, some underprovisioning, as well as important fluctuations of resource needs over

time. Then, we describe the design of ADARES, our adaptive system capable of adjusting VM

resources on-the-fly, together with our bandits formulation in Section 4.2. We show evaluation

results in Section 4.3, related work in Section 4.4, and future work in Section 4.5. We summarize

in Section 4.6.

4.1 Resource Utilization Measurements of Enterprise Clusters

This section presents our measurement study on resource allocation and utilization of enterprise

clusters with virtual execution environments. Our study characterizes the VM resource allocation

problem in the context of enterprise clusters and motivates the need for ADARES.

58

4.1.1 Measurement Methodology

We perform our measurements on enterprise clusters running the Nutanix commercial virtual exe-

cution platform described in greater detail in Section 3.1.

Nutanix cluster manager transparently allocates and migrates VMs based on user configured

resource settings and cluster-level utilization metrics. In addition, the platform provides transparent

access to highly available virtual storage (virtual disks) located within each cluster node.

Our dataset was collected from sensors deployed on the cluster nodes that record data regarding

a broad class of metrics, such as the resources utilized by a VM (e.g., CPU and memory) and cost

of various operations (e.g., average I/O latency). The dataset consists of a subset of the clusters that

push diagnostic information to a centralized data collection service and refers to the period from

April 23rd to May 20th, 2018. Table 4.1 shows an overview of the virtual execution environments

that we study, containing more than 250k VM traces.

Metric Value

of Companies 2,003

of Clusters 3,669

of Nodes 17,633

of VMs 252,941

Table 4.1: Dataset Overview

4.1.2 Private Cluster Configurations

To better understand the configuration patterns of enterprise clusters, we perform an analysis of

configurations at cluster, node, and VM levels.

59

Cluster-level Configuration Figure 4.1 shows the distribution of nodes per cluster (4.1a) and

the consolidation factor, i.e., the average number of VMs per node, (4.1b). From Figure 4.1a, we

observe that 60% of the clusters have 4 nodes or less, and 30% have between 5 and 10 nodes. In

general, the clusters have a modest number of nodes. We find that under these environments, when

users need additional nodes, companies tend to expand their computational resources by adding

clusters, as opposed to adding nodes to existing clusters.

There are three main reasons for this: 1) smaller clusters provide better fault isolation, 2) most

of the analyzed clusters are deployed on premise, in remote office/branch office (RoBo) configura-

tions, and 3) some companies prefer to create clusters for each line of business. Figure 4.1b shows

that 50% of the clusters have, on average, at most 16 VMs per node, and that 20% have more than

35 VMs per node, up to ∼200 VMs per node.

0 5 10 15 20 25 30
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) Nodes per Cluster

0 25 50 75 100 125 150 175 200
Avg. VMs per Node

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Consolidation Factor

Figure 4.1: Cluster-level Configuration

Node-level Configuration Enterprise clusters often have powerful nodes, as shown in Figure 4.2.

We observe that 50% of the nodes have more than 24 physical cores and 384 GiB of RAM, and

10% have at least 36 cores and more than 512 GiB of RAM.

60

8 16 32 64
Cores

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) CPU

64 128 256 512 1024
Memory Size (GiB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Memory

Figure 4.2: Node-level Configuration

VM-level Configuration Figure 4.3 provides an analysis of the VM sizes in terms of virtual

CPUs (vCPUs) and allocated memory. Our dataset shows that approximately half of the VMs are

configured with 2 vCPUs, whereas 20% are configured with 4 vCPUs. Regarding memory, around

35% of the VMs are deployed with 4 GiB of RAM, and 20% with 8 GiB. In both resources, we

note a “human” sizing pattern of using powers of 2.

We also observe a correlation between the size of the clusters and the number of VMs per node:

small clusters have on average the lowest VM density because such clusters typically run a small

number of applications supporting limited workloads. In contrast, larger clusters typically support

a broad mix of workloads, with some supporting applications such as virtual desktop infrastructure

(VDI), which typically deploy a large number of VMs for each connected user. Further, we note

that many medium-sized VMs (i.e., VMs with 2-4 vCPUs) are typically used to deploy server

applications such as SQL Server, MS Exchange, etc.

Summarizing, enterprise clusters are often small-sized single-tenant clusters, with powerful

nodes, that support the workload requirements of small and medium-sized businesses.

61

1 2 4 8 16 32
vCPUs

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) CPU

0.25 0.5 1 2 4 8 16 32 64
Memory Size (GiB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Memory

Figure 4.3: VM-level Configuration

4.1.3 Problem Characterization

This section provides an analysis on the utilization of the clusters. Our analysis relies on several

key metrics that we collect and are representative of the VMs resource usage. For each metric, we

record, on each cluster node, the average measurement over a 5-minute interval at the VM-level.

This data enable us to calculate the mean, maximum, and the 95th percentile (P95) of a series of

5-minute measurements for any given metric.

Figures 4.4a and 4.4b present the cumulative distribution function (CDF) of the mean, P95 and

maximum VM resource usage for CPU and memory. These results show that many of the VMs are

overprovisioned with respect to both CPU and memory. In particular, 90% of the VMs have P95

CPU and memory usages lower than 40%. Further, 80% of the VMs have a maximum resource

usage that is lower than 60% (CPU) and 80% (memory) throughout their lifetime; in other words,

40% and 20% of the allocated resources are never used by 80% of the VMs. By analyzing the

dataset we calculate that the global resources allocated but never used correspond to 26% (CPU)

and 27% (memory) of the total allocated resources by all VMs. Intuitively, the areas to the right of

the maximum line in Figure 4.4a and 4.4b represent the global wasted resources that are never used,

but our numbers additionally take into consideration the different absolute sizes of the VMs. Such

62

0 20 40 60 80 100
CPU Usage (%)

20%

40%

60%

80%

100%

CD
F

Mean
P95
Max

(a) CPU

0 20 40 60 80 100
Memory Usage (%)

20%

40%

60%

80%

100%

CD
F

Mean
P95
Max

(b) Memory

Figure 4.4: VM Resource Usage

allocated but sparsely used resources are the result of two main factors: 1) manual VM resource

allocation, and 2) users inability to accurately predict the resource demands of their workloads.

We observe a similar trend at the node level, i.e., many nodes have low average utilization

but experience high peak resource usage. We show the complementary cumulative distribution

functions (CCDF or 1-CDF) of node-level usage in Figure 4.5. Note that CCDFs are useful for

highlighting the tails of distributions. Besides CPU and memory usage, we also analyze the com-

pute processing load of the storage controller on each node and use it as a proxy of the node’s

0 20 40 60 80 100
CPU Usage (%)

1%

10%

100%

1
- C

DF

Mean
P95
Max

(a) CPU

0 20 40 60 80 100
Memory Usage (%)

1%

10%

100%

1
- C

DF

Mean
P95
Max

(b) Memory

0 20 40 60 80 100
I/O Load (%)

1%

10%

100%

1
- C

DF

Mean
P95
Max

(c) I/O

Figure 4.5: Node Resource Usage

63

I/O load. In general, we see that node usage is higher than VM-level usage, especially memory

utilization, due to oversubscription, where around 10% of nodes have, on average, more than 80%

memory usage, but still, many nodes are underutilized.

Although average utilization is generally low, our data still reveals that many VMs are under-

provisioned. Figure 4.6a shows the distribution of hotspot VMs per cluster. We consider a VM to

be a hotspot if its 95th percentile metric utilization is greater than 75%. We observe that 40% of

the clusters with hotspot VMs have at most 2 underprovisioned VMs, whereas 10% of the clusters

with underprovisioned VMs contain at least 10 hotspot VMs. From the total clusters in the dataset,

45% contain either CPU-hotspot VMs, memory-hotspot VMs, or both. Thus, our data suggests

that underprovisioning is not limited to few, possibly incorrectly managed, clusters; instead, our

data reveals that the hotspot problem impairs a large fraction of clusters.

1 10 100
Hotspot VMs

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) Distribution of Hotspot VMs per Cluster

0 20 40 60 80 100 120
Overprovisioned/Underprovisioned VMs

1%

10%

100%

1
- C

DF

(b) Ratio of Over/Underprovisioned VMs per Cluster

Figure 4.6: Hotspots and Over/Underprovisioned VMs Ratio

Summarizing, most VMs in today’s enterprise clusters are not sized appropriately, with many

VMs either overprovisioned or underprovisioned. This motivates the need for developing an au-

tomated system to determine VM resource allocations as opposed to relying on user-provided

configurations.

64

4.1.4 Opportunities and Challenges for Adaptive Resource Allocation

This section highlights some of the challenges and opportunities for adaptive resource allocation.

Figure 4.6b shows the distribution of the ratio of overprovisioned divided by underprovisioned

VMs (when such underprovisioned VMs exist) per cluster, at a given point in time. We consider

a VM to be overprovisioned if its 95th percentile metric utilization is less than 25%. Recall that

underprovisioned (or hotspot) VMs are those with a P95 utilization greater than 75%. In general,

when there are hotspots, there are also VMs with overprovisioned resources at the same time.

For example, we observe that 50% of the clusters with underprovisioned VMs have at least a 7:1

overprovisioned/underprovisioned VMs ratio.

We also correlate the VM/node provisioning and utilization metrics using Spearman’s correla-

tion [193], which assesses monotonic relationships between variables (linear or not). We use P95

values of each VM for this analysis. We show the results in Figure 4.7 as a heat map, which intu-

itively can be interpreted as follows. If metric x tends to increase when y increases, the correlation

coefficient is positive. If x tends to decrease when y increases, the correlation is negative. A zero

correlation indicates that there is no tendency for x to either increase or decrease when y increases.

CPU Usage Memory Usage vCPUs Memory

CPU Usage

Memory Usage

vCPUs

Memory

1.000

0.765 1.000

0.286 0.367 1.000

0.282 0.483 0.649 1.000

(a) VM-level

CPU Usage

Memory Usage
I/O Load

Cores
Memory

CPU Usage

Memory Usage

I/O Load

Cores

Memory

1.000

0.777 1.000

0.645 0.295 1.000

0.416 0.474 0.585 1.000

0.466 0.648 0.547 0.623 1.000

(b) Node-level

Figure 4.7: Provisioning and Utilization Metrics Correlations

65

A perfect correlation of ±1 occurs when each of the variables is a perfect monotone func-

tion of the other. We observe that CPU and memory usage have a strong positive (but not per-

fect) correlation, which seems to indicate that the compute-heavy workloads in our dataset are

also memory-intensive, but VM-specific tuning is still necessary to determine how much memory

should be provided to a VM to go with the amount of CPU resources allocated to it. Further, the

node-level I/O usage is not that strongly correlated with memory and CPU usage, indicating that

there is an opportunity to co-locate VMs that are just I/O intensive with VMs that are memory or

CPU-intensive.

Next, we examine the variation in resource utilization across time. The purpose of this analysis

is to quantify the need for reallocating resources across VMs within a cluster and to examine the

implications of static thresholds. Figure 4.8 shows the CCDF of the 95th percentile divided by the

mean of CPU (4.8a) and memory (4.8b) usages for both VMs and clusters. We notice that ∼45%

of the VMs have a P95 at least 2× bigger than the mean, for both metrics, which indicates that

there is significant variation across time for many VMs. However, at a cluster-level, the variation

of CPU and memory usage over time is insignificant, indicating that usage spikes are not highly

correlated across VMs.

0 1 2 3 4 5 6 7 8
P95/Mean CPU Usage

1%

10%

100%

1
- C

DF

VM
Cluster

(a) CPU Usage

0 1 2 3 4 5 6 7
P95/Mean Memory Usage

1%

10%

100%

1
- C

DF

VM
Cluster

(b) Memory Usage

Figure 4.8: P95/Mean Usage Ratios

66

Summarizing, many clusters have both underprovisioned and overprovisioned VMs. In fact,

there is significant disparity between the utilization levels of VMs in a cluster, regardless of the

resource type. This disparity, in turn, provides an opportunity to reallocate resources from VMs

that are overprovisioned onto VMs that are underprovisioned, potentially solving both problems.

However, such a mechanism would have to address two important challenges: 1) it can only real-

locate resources between VMs running at a given time, and 2) it has to continuously adapt to the

current load given the large temporal variations in VM resource usage.

4.2 System Design

This section describes the design of ADARES, a system that proposes an ML-based mechanism

to change the physical resources allocated to VMs based on workload characteristics and other at-

tributes of the virtual execution environment. Our system crucially relies on the contextual bandits

framework to guide the resource adjustment. This section starts with a high-level description of

the goals that determined the design of ADARES, an overview of the system, and a description of

its core components.

4.2.1 Goals

ADARES is designed to identify the appropriate resource allocation settings for VMs in enterprise

clusters. The goal is to improve cluster execution efficiency by allocating the optimal amount of

resources to each VM but without compromising VM performance; that is, the resources allocated

to a VM should be just adequate for it to operate without experiencing a slowdown. Thus, ADARES

reduces the resources allocated to overprovisioned VMs and increases resources allocated to un-

derprovisioned ones.

Note that the VM assignment problem is orthogonal and is out of the scope of this work, i.e.,

ADARES does not determine the optimal node to which a VM is assigned or migrated to; instead,

it relies on existing tools, such as VMware’s vShpere/vMotion [184], to address this challenge.

Nevertheless, by optimally setting the resource allocation, ADARES allows such tools to both

pack more VMs into clusters as well as migrate VMs to the appropriate nodes that have sufficient

67

resources to host them [177].

We design our system with the goal of achieving the following properties:

• Highly adaptive: The system should work in a diverse set of operating conditions and iden-

tify optimal operating points for a diverse set of cluster, node, and VM configurations. It

should continuously adapt VM configurations in response to changes in workloads. Our

choice of contextual bandits is primarily driven by its ability to learn and adapt to such set-

tings.

• Safe allocations: A key challenge with using the bandit framework in our setting is that

the adaptive controller might require a significant amount of unsafe exploration to distill a

decent model of cluster behavior. We seek to build a system that can transfer the knowledge

gained from simulations and thereby safely streamline the model distillation process in real

clusters.

• Modular and configurable: Our system should provide a configurable framework that can

integrate a variety of measurement sensors and operate using configurable prediction models.

Further, we desire a framework that can integrate system management policies defined by the

cluster operator (e.g., ensuring that VMs never exceed a certain amount of utilization for a

given resource). Moreover, the approach should be general enough to be able to work with

many hypervisors and virtualization environments.

4.2.2 Components

This section provides an overview of our system and introduce its core components. Figure 4.9

shows a high level overview of its architecture on top of Nutanix’s distributed storage fabric (DSF).

ADARES is composed of five core components to optimize VM configurations: the Sensing Service

component is deployed on each node in the cluster and runs within the controller VMs (CVMs),

whereas the remaining components are executed within the cluster manager node.

68

Figure 4.9: ADARES Architecture

4.2.2.1 Sensing Service (SS)

The Sensing Service is in charge of collecting telemetry data. The current version collects data at

cluster, node, and VM-level. It utilizes sensors on each of the nodes in the cluster to continuously

collect information regarding the utilization levels of resources as well as some key performance

metrics of the VMs. For instance, it collects information on the CPU and memory utilization of

VMs and the number of IOPS performed by each VM, as well as performance metrics such as

CPU ready times, virtual memory swap rates, and the latency of I/O operations. These sensors

are typically deployed on the controller VMs (CVMs) running on each node, which not only have

access to VM-level metrics (e.g., CPU or memory utilization), but also interpose on I/O operations

performed by the VMs on the virtual disks exported by the cluster software.

4.2.2.2 Filtering Service (FS)

The Filtering Service component serves as a preprocessing step running on the cluster manager

node and is designed to limit the number of VM configuration changes made by the system at a

given time. It enables the operator to filter the collected telemetry data based on different strategies.

69

For instance, the FS can filter VMs with CPU usage greater than a certain threshold, randomly

select a percentage of the total VMs in the cluster, etc. The output of this service is typically a

subset of VMs that will be tuned in a given round of the contextual bandit algorithm. As such, the

FS component functions as a throttling mechanism, as it can control the rate at which changes are

made. This is especially important for highly loaded systems, where changing a large number of

VMs at the same time could be counterproductive. It is worth noting that although this component

aims to filter inputs in order to avoid unnecessary computations, ADARES can be configured to

also discard outputs—as we shall see next in the Decision Service.

4.2.2.3 Predictive Service (PS)

The Predictive Service along with the Decision Service encompass the core contextual bandit logic

in ADARES. At a high-level, a machine learning (ML) model identifies the appropriate arms or

actions (e.g., scale up/down a VM’s memory allocation), given the current context or state of the

VMs in the cluster (e.g., utilization level and other metrics). The actions are chosen based on

some expected reward, i.e., the effect of taking the actions on the VM performance metrics. We

discussed these concepts in greater detail in Section 2.2.

PS exports two methods as part of its interface: 1) predict, which outputs the recommended

actions for the selected VMs based on the ML model trained to maximize the expected reward, and

2) learn, which supports updating the ML model in an online fashion, in order to fold in the actual

observed rewards as a consequence of pulling arms (or taking actions).

It is worth noting that our framework is somewhat agnostic to the specific ML model chosen

(e.g., linear models, decision trees, neural networks), as well as the prediction task (e.g., classifi-

cation, regression), and it could be used outside the contextual bandits domain. For example, the

user could potentially train a model to predict the peak CPU utilization of a VM in the next hour

and use this prediction to determine whether to increase/decrease the number of vCPUs, or simply

design a classifier to decide whether to scale up/down the memory of a VM based on the current

performance metrics, without taking into account any expected reward, as opposed to how bandits

work.

70

4.2.2.4 Decision Service (DS)

The Decision Service component makes the final decision regarding changes to resource alloca-

tions. PS gives hints to DS (e.g., with high confidence PS can recommend to scale down the vCPUs

of a particular VM), but it is up to the DS service to follow PS’s advice. DS can be seen as a com-

ponent that leverages the ML-based predictions, but additionally, folds in two other considerations

when determining the actual decisions performed by the cluster manager: 1) exploring the config-

uration space to discover the rewards associated with a diverse set of actions, and 2) leveraging

domain knowledge to make more sensible decisions given the application domain.

For the latter consideration, DS enables users to configure different rules, such as min-max

(hard) bounds of utilization and resources, as well as update levels of resources per VM (or group

of VMs). For example, a user could set a configuration to ensure that VDI VMs can only have

between 1 and 4 vCPUs, and 2-8 GiB of memory, and that the system must always scale up the

vCPUs of those VMs if their CPU usage is more than 90%. Further, on every scaling operation

the user can configure, for example, to limit the number of updates of vCPUs to ± 1 and memory

to ± 40%. This feature allows ADARES to be more cautious or aggressive in accordance with the

workload resource tolerance.

4.2.2.5 Execution Service (ES)

The decisions made by DS are handed to this service, which triggers the adjustments. In order

to perform provisioning changes on-the-fly, the underlying guest OS kernel needs support for hot

addition/removal of CPUs and memory. We use Linux guests that provide such support.

Our current prototype supports integration with VMware vSphere,1 which acts as the VM man-

agement software layer, and we use VMware ESXi as the nodes’ hypervisor. As VMware vSphere

only provides native support for hot addition of both resources but not removal, we use other

vSphere APIs to perform the adaptations. In particular, we use APIs to execute programs directly

on guests using the VMware Tools agent installed on the VMs, as the resources addition/removal

1For details refer to https://www.vmware.com/products/vsphere.html.

https://www.vmware.com/products/vsphere.html

71

can be done with native Linux programs (echo and grep) [55, 145]. Finally, this component also

keeps track of the execution progress and notifies the main controller of any failures during the

process.

4.2.3 Bandit-based Approach

We now describe how ADARES uses contextual bandits for the VM resource allocation problem.

We begin by describing the rationale behind the bandits choice. We then outline how we apply it to

our problem setting. Importantly, this section identifies the challenges in using contextual bandits

and how ADARES addresses them.

4.2.3.1 Why Contextual Bandits?

Training a model offline using any supervised learning algorithm would not work in our case

because VM workloads change frequently and many incoming VMs do not have historical records

at all. Such approach would require re-training the model with a high frequency to try to keep up

with workload changes and its unclear how often this process would be required to attain acceptable

results.

Instead, using an online learning algorithm is more suitable because it automatically and dy-

namically adapts to new patterns as new data becomes available. One can think of an online model

trained to predict workload characteristics of VMs. For example, given a new VM context, a model

would predict its maximum CPU usage in the next hour, and if it is above certain target threshold,

then the system would scale its vCPUs up. However, even if we had a perfectly accurate predictive

model, we would not have an easy way to properly fold the result of taking the action into the

model, as the prediction task is decoupled from the result of the action. Furthermore, the action

taken would have affected the actual max CPU usage of the VM during the hour, complicating the

learning process.

We therefore need an online formulation where the learning task itself could estimate the result

(i.e., reward) of taking an action, given side information (i.e., VM context). As we do not know

what would have happened had we taken a different action, our model should take different actions

72

so as to refine its estimates. The two main models that encompass the above characteristics are

contextual bandits and reinforcement learning, described in greater detail in Chapter 2.

Reinforcement learning (RL) [199, 201, 198] is oftentimes seen as an extension of the contex-

tual bandit setting. One difference is that the reinforcement learning agent can take many actions

until it observes a reward. For example, in a chess game, the player makes many moves but the

reward is only revealed at the end of the game (win, loss, draw). This sparsity makes the problem

harder to learn and gives rise to the so-called credit assignment problem, i.e., which actions along

the way actually helped the player win? Further, in RL, a current decision may have an impact

over a long horizon.

Although in our setting RL would be ideal, we can make certain simplifying assumptions to

make the problem easier to learn in practice, and therefore be able to model it using contextual

bandits. We do not need to deal with sparse rewards; after we scale a VM, we can sense its

performance metrics with our Sensing Service and get an idea of how much the scaling action

affected the VM. But most importantly, given the high number of changes we perform to VMs,

we can assume that a current change will not have an impact on the VM performance over a long

horizon (e.g., on the next day).

Even though recent successes in deep reinforcement learning [153, 152] have made it quite

popular among practitioners, most RL algorithms lack theoretical guarantees. On the contrary,

there are many contextual bandits algorithms with strong theoretical guarantees that ensure con-

vergence to an optimal solution [131, 6, 28], and they typically have a faster ramp up than their RL

counterparts—another important aspect towards a successful practical implementation.

4.2.3.2 Context-Actions-Reward

In order to apply contextual bandits to manage VM resources, we need to define the set of features

that represent the contexts x, the set of possible actions A , and the reward function. Crucially, all

this setup depends on how the rest of the system is structured, as in what can be measured and how

the performance of an application VM can be quantified.

73

Context We represent the context of VMs by cluster, node and VM-level features, as well as

temporal information. The context attributes include the various measurements collected by the

Sensing Service, e.g., the resource allocations made to VMs, current and historical resource uti-

lization levels (at VM, node, and cluster granularities), summary statistics of those (e.g., max,

min, average, and P95 utilization), performance metrics that characterize VM behavior (e.g., la-

tency, IOPS, swap rates, CPU ready time, etc.), overcommitment factors of the node and cluster

where the VM is running, and others. Is worth noting that the ability to feed side information into

the agent, allows the agent to do context-dependent adaptations, and makes the whole contextual

bandits framework well-suited for our setting.

The intuition behind including global information, i.e., cluster and node-level features besides

just the VM information, is to aid the agent in making more “coordinated" scaling decisions across

VMs, by also taking into account availability of resources in the host(s), oversubscription levels,

etc. For instance, when the side information shows that a node’s resources are highly overcommit-

ted, the agent might decide not to increase the resources of its VMs. Or when it detects sinusoidal

usage patters in VMs, it may decide to augment and decrease their resources depending on the part

of the cycle it is in, and so on.

Actions We use a special case of the general contextual bandit framework introduced in Sec-

tion 2.2, in which the action set At remains unchanged for every round t. In particular, we define

a total of three actions per resource type (scale up, scale down or noop). For example, the agent

can choose to scale up memory and scale down vCPUs, scale down both, neither, etc. Actions

result in resource allocations updates to VMs, and in turn, VMs respond to the new allocations

by exhibiting an updated set of utilization and performance metrics, which the agent then uses to

update its model.

Reward The final step in setting up the bandit formulation is to define the reward function. The

primary objective in defining the reward function is to steer the cluster configurations towards

states that correspond to minimal VM-level resource allocations without compromising VM per-

74

formance. Our framework is agnostic to the way the reward function is defined; the only constraint

it imposes is that the reward must be a function of the various metrics gathered by the Sensing

Service.

We give a reward of 1 when, irrespective of the action, we move from a “bad” state to a “good”

one, e.g., from a context with swapping and/or CPU overload to a context without. We also give a

payoff of 1 if we make “good” actions, e.g., if we scale down to increase the usage, but the VMs

do not end up incurring in swapping or CPU overload, or if we scale up to try to escape from a

state with swapping or high CPU load. On the other hand, we penalize (zero reward) actions that

lead to bad states, e.g., if we are not swapping and after scaling down we start doing so. Finally,

we also penalize scaling up/down recommendations of PS if the domain knowledge encoded in DS

heuristics (i.e., hard bounds) don’t allow them.

We note that there are likely many formulations of the reward function that achieve the desired

objective of maximizing system efficiency without hurting VM performance. We plan to provide

the cluster operator with the ability to configure the reward function by incorporating additional in-

formation from application-level performance metrics, as that would allow for more precise reward

valuations and faster convergence to optimal configurations.

4.2.3.3 Safe Allocations and Faster Training: Sim2Real

Another challenge of applying bandit-based approaches in our setting is that we need to ensure

reasonable performance and respect “safety” constraints during the learning process. We need to

be extra cautious not to mess up with VMs while exploring different actions but, at the same time,

we want to make the right decisions as soon as possible. Incorporating “prior knowledge” before

the agent is deployed might help to speed up learning and reduce the amount of (costly) interactions

with the real VMs [15, 112].

Inspired by the robotics community, as well as prior work on the systems space [79], herein,

we build a cluster simulator to pre-train our agent. The idea is to then transfer the knowledge

gained while training on this (cost-less) simulator to bootstrap our agent before it is deployed in

real clusters. We start the section by stating what we need from the simulator, the challenges its

75

construction presents, and how we address those challenges in our work.

Requirements The simulator should provide an easy mechanism to emulate, to some extent, the

dynamics of a cluster. We are interested in modeling what happens to VM performance metrics

once we perform configuration changes. In other words, we need (simplistic) analytical models

of the environment that our Sensing Service can query to obtain the contextual information (or

features) and rewards necessary to train our agent.

Challenges Although we brought robotics into the picture, building a simulator of a robot is a

completely different endeavor. Therein, the well-defined rules of physics (e.g., gravity) aid in the

otherwise even harder process. Herein, we don’t have those; the large number of components and

connections (e.g., VMs, nodes, storage devices, queues), the intricate dependencies (e.g., hyper-

visors multiplexing shared resources), and the irregular resource needs (e.g., different workloads

changing over time) complicate our ability to create a simulator that faithfully represents a real

cluster.

Nevertheless, from a machine learning standpoint, we don’t need an entirely “accurate" sim-

ulator, we need a reasonable initialization of what we believe the dynamics are, and then we can

keep updating those beliefs as we keep on training in the real cluster. By incorporating (incom-

plete) initial knowledge, the agent would be exposed to the relevant regions of the context and

action spaces from the earliest steps of the learning process, thereby eliminating the time needed

in random exploration for the discovery of these regions, as in safe reinforcement learning [85].

Data-driven approach Following the “reasonable" premise above, we use a data-driven straw-

man approach to build our cluster simulator. We run a set of controlled experiments on synthetic

workloads that aim to mimic the ones we observe in real clusters, and we perform different changes

to VM configurations and record their impact. For example, we change the amount of vCPUs as-

signed to VMs and observe how those changes affect their CPU usage.

Further, we run different I/O benchmarks using vdbench [212] to profile IOPS and latencies

76

for different representative workloads (e.g., 8k random reads, 8k random writes, 1M sequential

writes, 8k 50% random reads and 50% random writes, burst, sequential) at different rates, and with

different outstanding I/O per node. This profile data gives us an idea of the rates at which our

system can (roughly) serve the different types of I/O.

Given that we have an estimate of the service rates, and as we know the amount of outstanding

I/O in a node, we then resort to queueing theory (single server model or M/M/1) to compute arrival

rates per node, and then derive approximate latencies (or wait times) in the system. Finally, we

also create multi-queue multiprocessor schedulers with round robin per node, to roughly estimate

CPU ready times among the VMs running in those nodes. We acknowledge that the addition of

extra features to the simulator can (and probably will) get us better results on real clusters. We

leave that to future work.

4.2.4 Controller

Having introduced the core constructs of ADARES, and the instantiation of the contextual bandits

approach, in this section, we show how we use our system together with the latter framework to

dynamically adjust VM resources.

The core services described in Section 4.2.2 are orchestrated by a controller running in the

cluster manager node. Listing 1 shows a (simplified) example of the main controller loop, the heart

of our agent. The agent starts sensing the cluster state (cluster, node, and VM-level information).

Note that in our setting we define contexts xt ∈ Rd per VM, thus here Xt ∈ Rnxd , where n is the

number of VMs in the cluster, and d the size of our feature vector. The ith row in matrix Xt

represents the context of the ith VM.

The agent then uses FS to select b VMs eligible for allocation updates in the current round,

where b ≤ n, and contacts the Predictive Service to obtain the recommendations for those filtered

VMs (Pt ∈ Rbx|At |, where |At |= 9 is the number of possible actions) (Line 4). In this and the next

step is where the bandit algorithm comes into play. After obtaining the predictions, the Decision

Service uses an exploration/exploitation strategy together with its domain knowledge to decide

which actions to take (At ∈ Rbx1, i.e., only one action per VM).

77

Listing 1 ADARES Controller
1: Xt ← ss.sense(cluster) (sense context)

2: for t = 1,2... do

3: Xt ← fs.filter(Xt) (filter VMs)

4: Pt ← ps.predict(Xt) (get prediction values)

5: At ← ds.decide(Pt) (explore/exploit + domain knowledge)

6: es.execute(At) (execute actions)

7: Xt+1← ss.sense(cluster) (sense new context)

8: Rt,At ← reward(Xt , At , Xt+1) (compute rewards)

9: ps.learn(Xt , At , Rt,At) (online learning)

10: Xt ← Xt+1 (update context)

11: end for

The set of actions are passed to ES for the actual execution (Line 6). After the actions are

executed, the agent uses the Sensing Service to get a sense of the actions’ impact on the VMs

performance metrics. Note that Xt+1 ∈ Rnxd , i.e., we sense the whole cluster, not just the previous

b filtered VMs. We do this because we will use these new contexts in the next iteration (Line

10), and because the filtering step (Line 3) may select a different subset of VMs than in previous

iterations. The agent computes the rewards only for the b filtered VMs of the current round. Finally,

the agent learns the benefits/drawbacks of taking actions At for contexts Xt in Line 9.

4.3 Evaluation

We implemented ADARES in about 7.8 kLOC of Python. Our current prototype is built in the

context of the same Nutanix commercial virtualization product that we used to collect the cluster

measurements. In this section, we present the evaluation of our prototype with experiments on real

clusters.

78

4.3.1 Setup

Cluster We have full control over an experimental cluster. This mainly homogeneous cluster

consists of a total of 48 cores, a CPU capacity of 115.2 GHz and 512 GiB of RAM, on which we

run around 20-36 VMs.

Virtualization Software We use VMware ESXi 5.5.0 as the hypervisor, and our Execution Ser-

vice talks to vSphere to change the virtual hardware associated with the different VMs. We generate

VM images with CentOS Linux 7, kernel version 3.10.x.

Further, we clone the VMs in our experiments from the three instance types shown in Table 4.2.

None of the VMs can have less than 1 vCPUs and 2 GiB of RAM, but their maximums differ based

on the type. Finally, we set the same tuning aggressiveness for all VMs, ± 1 for vCPUs and ± 512

MiB for memory.

VM Instances

Resources

Initial Min-Max

vCPUs Mem (GiB) vCPUs Mem (GiB)

large 2 3.75 1-4 2-7.5

xlarge 4 7.5 1-8 2-15

2xlarge 8 15 1-16 2-30

Table 4.2: VM Instance Types and Min-Max Ranges

Workloads We simulate different workloads using a modified version of flexible I/O tester [18],

where we can configure the VM CPU load, the workload active memory size, and the I/O op-

erations per second. We attempt to mimic the real workloads we observe in our traces, some

VDI-based workloads, other Server-like workloads (e.g., SQL server), etc. We mainly issue 8k

79

block-sized I/O. Depending on the workload, we do random reads, random writes, and both ran-

dom reads and writes (50% each, 70-30%, or 80-20%).

Methods We use the following methods in our experiments:

• passive, where no configurations adjustments are done to VMs. This is the baseline currently

deployed in Nutanix clusters.

• reactive, where we sense information about the VMs and if their usages are above/below

certain threshold(s) we perform the adaptations.

• proactive, similar to reactive, but uses a machine learning model to predict maximum usages

sometime in the near future (e.g., 10 minutes). It performs changes if the predicted utilization

levels deviate from the configured target threshold(s).

• bandits, our method, where we adjust resources using contextual bandits.

We use 75% as the underprovisioned threshold for the reactive and proactive baselines; that is,

if the current or predicted VM resource usage (either CPU or memory) is above 75%, the system

scales the resource(s) up. Similarly, we use a 25%-threshold to indicate overprovisioning, i.e., if

the current or predicted VM resource usage is below that threshold, we scale the resource(s) down.

Our system makes decisions every 5 minutes.

Machine Learning Further, we use two linear models, one for each resource, to predict the max

utilization of each resource in the next 10 minutes, in the proactive baseline. We train the models

using stochastic gradient descent [33], with l2 regularization, and the squared loss. We use the

default hyperparameters of scikit-learn [162].

For our method, bandits, we use LinUCB, the popular upper confidence bound (UCB) [205]

algorithm described in Section 2.2.1.2. We set the exploration constant to 0.5 (higher means more

exploration), and the regularization parameter of the ridge regression to 0.01.

80

4.3.2 Results

4.3.2.1 Cluster Simulator Fidelity

We start off by evaluating the fidelity of our cluster simulator. Herein, we instantiate 26 xlarge

VMs in our cluster. We group them in four distinct groups, each with a different workload pattern

and I/O intensity. We perform random configuration changes during a 8-hour period. We record

all the actions done along the way, and we then replay those exact same actions in our simulator.

0 5000 10000 15000 20000 25000 30000
Time (seconds)

100

110

120

130

140

150

160

To
ta

l v
CP

Us
 P

ro
vi

sio
ne

d

Sim
Real

(a) Provisioned vCPUs

0 5000 10000 15000 20000 25000 30000
Time (seconds)

188

190

192

194

196

198

200

202

To
ta
l M

em
or
y
Pr
ov

isi
on

ed
 (G

iB
) Sim
Real

(b) Provisioned Memory

0 5000 10000 15000 20000 25000 30000
Time (seconds)

10

20

30

40

50

60

70

80

90

Av
g.
 V
M
 C
PU

 U
sa
ge
 (%

)

Sim
group0
group1
group2
group3

Real
group0
group1
group2
group3

(c) CPU Usage

0 5000 10000 15000 20000 25000 30000
Time (seconds)

0

20

40

60

80

100

Av
g.
 V
M
 M

em
or
y
Us

ag
e
(%

) Sim
group0
group1
group2
group3

Real
group0
group1
group2
group3

(d) Memory Usage

Figure 4.10: VM Resource Provisioning and Utilization

Figures 4.10a and 4.10b show the total vCPUs and memory provisioned across the VMs over

81

time. Both the simulator (Sim) and the real cluster (Real) lines overlap, as we are replaying the

same actions in the simulator. More interestingly, Figure 4.10c shows the average VM CPU usage

across the four different VM groups. We observe that the simulator is doing a pretty good job in

estimating the CPU usage of all the groups when we perform adaptations. Similarly, Figure 4.10d

illustrates the memory usage across groups. We note that our simulator mostly underestimates the

usage, which is most notoriously for groups 2 and 3. However, it seems to follow the line trend

(e.g., groups 0 and 1) but is off by some constant factor.

Finally, Figure 4.11 shows the average VM latency decomposed in groups doing random reads

(RR) and random writes (RW). We see that our simulator does a better job at estimating RWs

operations, though it also does a decent job for random read I/O.

0 5000 10000 15000 20000 25000 30000
Time (seconds)

0.5

1.0

1.5

2.0

2.5

3.0

Av
g.

 V
M

 L
at

en
cy

 (m
s)

Sim
RR
RW

Real
RR
RW

Figure 4.11: Latency

4.3.2.2 Transfer Learning: Sim2Real

In this section we evaluate how transfer learning helps to speed up training in real clusters. We

run different static workloads across a set of 36 VMs, 12 of each of the instance types described

in Table 4.2, for a period of ∼4 hours. Herein, we compare the two flavors of our bandit-based

approach, with and without transfer learning. Note that we pre-train in our simulator using VMs

82

that run other workloads in order to avoid overfitting. Still, if we were running the same workloads

and overfitting, it would be an extra evidence of the reasonable performance of our simulator.

Figure 4.12a shows the total vCPUs provisioned over time for both bandit-based approaches,

with and without transfer learning. We observe that the allocations are much more stable when

we pre-train. Transfer learning lead us to a 2× saving of vCPUs allocations for this workload

(109 vCPUs as opposed to 216). Even more, without pre-training, the agent ends up allocating

more vCPUs than the ones it started with. This latter statement highlights the importance of safe

exploration while applying these type of methods. Figure 4.12b shows the average I/O operations

per second of the VMs in this workload. We observe that, even though we saved 2× vCPUs, we

are still able to perform very close to the vanilla bandit version in terms of IOPS.

0 2500 5000 7500 10000 12500 15000
Time (seconds)

0

50

100

150

200

250

To
ta

l v
CP

Us
 P

ro
vi

sio
ne

d

w/o transfer
with transfer

(a) Provisioned vCPUs

0 2500 5000 7500 100001250015000
Time (seconds)

0

200

400

600

800

1000

Av
g.

 V
M

 IO
PS

w/o transfer
with transfer

(b) VM IOPS

Figure 4.12: vCPUs Allocations and VM IOPS

We now illustrate how transfer learning helps LinUCB to accelerate training. Figure 4.13

shows the estimated reward and uncertainty of the different actions for a random VM context that

has memory underprovisioning. We observe that the estimated rewards start at zero (solid dots)

and uniform uncertainty (long lines with caps), when we start training from scratch (top of Fig-

ure 4.13a). As the agent learns, the confidence bounds shrink for that same context. However, the

agent still recommends to do nothing CPU_NOOP_MEM_NOOP, the action with highest score.

83

On the other hand, Figure 4.13b shows the benefits of “bootstrapping" our model. At the top, we

see non-uniform confidence bounds. Note that the agent is able to recommend the right action for

this context (CPU_NOOP_MEM_UP), from the beginning, due to the knowledge transfer. Few it-

erations later, the upper confidence bounds are close to the expected reward, and the leading actions

are still the ones that involve scaling up memory.

0.0

0.5

1.0

1.5

2.0

Iteration 0

CP
U_

UP
_M

EM
_U

P
CP

U_
UP

_M
EM

_D
OW

N
CP

U_
UP

_M
EM

_N
OO

P
CP

U_
DO

W
N_

ME
M_

UP
CP

U_
DO

W
N_

ME
M_

DO
W

N
CP

U_
DO

W
N_

ME
M_

NO
OP

CP
U_

NO
OP

_M
EM

_U
P

CP
U_

NO
OP

_M
EM

_D
OW

N
CP

U_
NO

OP
_M

EM
_N

OO
P

Actions

0

2

4

6
Iteration 10

Es
tim

at
ed

 R
ew

ar
d

+
Un

ce
rta

in
ty

(a) Without Transfer Learning

−2

−1

0

1

2

Iteration 0

CP
U_
UP
_M
EM
_U
P

CP
U_
UP
_M
EM
_D
OW
N

CP
U_
UP
_M
EM
_N
OO
P

CP
U_
DO
W
N_
ME
M_
UP

CP
U_
DO
W
N_
ME
M_
DO
W
N

CP
U_
DO
W
N_
ME
M_
NO
OP

CP
U_
NO
OP
_M
EM
_U
P

CP
U_
NO
OP
_M
EM
_D
OW
N

CP
U_
NO
OP
_M
EM
_N
OO
P

Actions

−5

−4

−3

−2

−1

0

1
Iteration 10

Es
tim

at
ed
 R
e
ar
d
+
Un
ce
rta
in
ty

(b) With Transfer Learning

Figure 4.13: LinUCB and Transfer Learning

4.3.2.3 Workloads

Static Herein, we evaluate static workloads, which are characterized by a somewhat flat utiliza-

tion profile over time. To that end, we use the same setting as Section 4.3.2.2, where we run

workloads on a set of 36 VMs, 12 of each instance type, during 4 hours. We only report results on

84

the bandits version that uses transfer learning.

Figure 4.14a shows the vCPUs allocations over time for the different methods. We see that both

proactive and bandits result in the fewest allocations, although our method converges to a steady

state sooner.

Further, Figure 4.14b plots the CDF of CPU usages of VMs, both at the beginning and at the

end of the runs. We observe that around 30% of the VMs start with 100% CPU usage, and ∼35%

are using less than 20% of their computational resources. As expected, the initial curves have an

almost perfect overlap, as every method runs the same workload. More interestingly, at the end of

the runs, we can see how the adaptive methods increase the usages of overprovisioned VMs (by

scaling them down), as well as decrease the usage of underprovisioned ones (by scaling up). For

example, in the bandits method, 35% of the VMs have at most 55% of CPU usage, and only less

than 10% of the VMs have 100% CPU usage, as opposed to the initial 30%.

Overall, we see a 35% improvement, in terms of amount of vCPUs allocated, for the ML-based

methods (bandits and proactive), when compared to static or threshold-based approaches. Further,

at the end of the run, the standard deviation of the VMs CPU usage is 18% and 22% for bandits

and proactive respectively, as opposed to 35% of passive, i.e., a 48%-37% improvement. Although

the deviation of reactive is lower (14%), the average VM CPU utilization also is, 46% as opposed

to 62% of bandits.

Increasing Another example of workloads we observe in practice are those with increasing re-

source demands. In this case, we simulate a workload with increasing working set size (WSS). We

augment the WSS every 20 minutes for a group of 20 xlarge VMs running in our controlled cluster.

Figure 4.15 shows the results of 4-hour runs. From 4.15a we observe that both reactive and

proactive begin by hot removing memory from VMs. Around 6k seconds, the sensed memory us-

age goes above 75%, thus reactive starts scaling up. The surprising fact is the proactive allocations

do not change. By looking at the predictions from this method, we observe that it always predicts a

maximum memory utilization less than 75%, therefore, it does not perform adaptations. We spec-

ulate the reason is that it has not enough information to start making “accurate” predictions yet.

85

0 2000 4000 6000 8000 10000 12000 14000
Time (seconds)

0

50

100

150

200

To
ta

l v
CP

Us
 P

ro
vi

sio
ne

d

passive
reactive
proactive
bandits

(a) Provisioned vCPUs

0 20 40 60 80 100
VM CPU Usage (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

End
passive
reactive
proactive
bandits

Start
passive
reactive
proactive
bandits

(b) VM CPU Usage (Start-End)

Figure 4.14: Static Workload

Bootstrapping the method with our simulator using the same idea of transfer learning could have

helped.

On the other hand, we can see that the bandits method allocates slightly extra memory than

passive during the initial ∼130 minutes of the run. As the agent starts receiving punishments (or

zero rewards) because of increasing swapping levels in the guest OSes, it starts scaling up (around

9k seconds). This phenomenon can be observed in Figure 4.15b, where we show the percentage

of VMs that experience swapping over time. As expected, bandits performs the best, as it is being

trained to avoid such states (or contexts).

Further, Figures 4.15c and 4.15d compares the average cluster latency and the total cluster IOPS

of passive and bandits methods. We observe that our method shows lower I/O latency in general,

and it can keep up with the workload IOPS. Overall, if we consider the number of VMs that are

experiencing swapping at the end of the run, we can see bandits has a 63-65% improvement over

the other baselines.

Periodic and Static We now focus on periodic and static workloads. In particular, we vary CPU

utilization levels of VMs (Figure 4.16a), but keep constant the memory usage (Figure 4.16b). We

86

0 2000 4000 6000 8000 10000 12000 14000
Time (seconds)

0

50

100

150

200

250

To
ta

l M
em

or
y

Pr
ov

isi
on

ed
 (G

iB
) passive

reactive
proactive
bandits

(a) Provisioned Memory

0 2000 4000 6000 8000 10000 12000 14000
Time (seconds)

0

20

40

60

80

100

VM
s S

wa
pp

in
g

(%
)

passive
reactive
proactive
bandits

(b) VMs doing Swapping

0 2000 4000 6000 8000 10000 12000 14000
Time (seconds)

0

2

4

6

8

Av
g.

 C
lu

st
er

 L
at

en
cy

 (m
s) passive

bandits

(c) Cluster Latency

0 2000 4000 6000 8000 100001200014000
Time (seconds)

0

2000

4000

6000

8000

To
ta

l C
lu

st
er

 IO
PS

passive
bandits

(d) Cluster IOPS

Figure 4.15: Increasing Memory Workload

expect the adaptive methods to decommission CPU resources during non-peak times, and restore

them back during high demand, and also, reduce the amount of provisioned memory to increase

utilization. We run a 1-day long experiment, where we deploy four ADARES agents and execute

them in parallel, one for each method. Each agent controls 8 xlarge VMs, which are evenly spread

across the nodes in the cluster.

On average, we observe that the ML-based adaptive methods provision less vCPUs and mem-

ory than the other two (Figures 4.16c and 4.16d), which translates into higher resource utilization

(Figure 4.16e). For example, the average memory usage of bandits almost doubles passive’s usage.

87

0 20000 40000 60000 80000
Time (seconds)

20

40

60

80

100

Av
g.

 V
M

 C
PU

 U
sa

ge
 (%

)

(a) CPU Pattern

0 20000 40000 60000 80000
Time (seconds)

0

20

40

60

80

100

Av
g.

 V
M

 M
em

or
y

Us
ag

e
(%

)

(b) Memory Pattern

0 20000 40000 60000 80000
Time (seconds)

0

10

20

30

40

50

60

To
ta

l v
CP

Us
 P

ro
vi

sio
ne

d passive
reactive
proactive
bandits

(c) Provisioned vCPUs

0 20000 40000 60000 80000
Time (seconds)

0

20

40

60

80

100
To

ta
l M

em
or

y
Pr

ov
isi

on
ed

 (G
iB

)
passive
reactive
proactive
bandits

(d) Provisioned Memory

passive reactive proactive bandits0

20

40

60

80

100

Av
g.
 V
M
 U
sa
ge

 (%
)

CPU
Memory

(e) VM Usage

0 20000 40000 60000 80000
Time (seconds)

1000

1500

2000

2500

3000

3500

To
ta
l V

M
 IO

PS

passive
reactive
proactive
bandits

(f) VM IOPS

Figure 4.16: Periodic and Static Workload

88

Further, even though bandits uses less resources, it can still keep up with the IOPS of the

workload (Figure 4.16f). Overall, bandits ends up using around 25 GiB of RAM, almost a 60%

reduction over the static baseline, while at the same time keeps reducing the CPU overload during

peak times. Finally, we acknowledge that different threshold settings can cause completely differ-

ent behavior for the reactive and proactive approaches. Even for bandits, hyperparameter tuning of

exploration constants, more advanced feature engineering, or non-linear models (both for bandits

and proactive), could boost these numbers up. We leave that to future work.

4.3.2.4 LinUCB in Practice

Finally, we illustrate few more examples of how LinUCB operates in practice. We use our cluster

simulator to replicate the real cluster environment, and we run heterogeneous workloads across 36

VMs during 1k iterations. We checkpoint our model every 500 iterations to be able to track the

progress.

We randomly select a VM with CPU underprovisioning and one with both CPU and memory

underprovisioning. We show the estimated reward and uncertainty of the examples in Figures 4.17a

and 4.17b respectively. In both cases, we observe that the estimated rewards start at zero and there

is high uncertainty in every action. As the algorithm performs exploration, those intervals shrink

and the estimated rewards get closer to the expected rewards for each action (Iteration 500). The

algorithm then starts exploiting and choosing the actions with the highest expected reward. From

Figure 4.17a, we see that the “best” actions are the ones that involve scaling up vCPUs, as the VM

experiences high CPU overload. Although the noop action seems to be the most explored one, as

its confidence interval shrinked the most, its estimated reward is still below the aforementioned

actions. On a similar note, Figure 4.17b illustrates that scaling up both vCPUs and memory is the

clear winner for VM contexts with underprovisioning of both resources.

4.4 Related Work

We discuss work relevant to ADARES [44] in the areas of measurements and different approaches

towards resource management (RM).

89

0

20

40

60
Iteration 0

−1

0

1

Es
 im

a
ed

 R
ew

ar
d

+
Un

ce
r a

in
 y

I era ion 500

CP
U_

UP
_M

EM
_U

P
CP

U_
UP

_M
EM

_D
OW

N
CP

U_
UP

_M
EM

_N
OO

P
CP

U_
DO

W
N_

ME
M_

UP
CP

U_
DO

W
N_

ME
M_

DO
W

N
CP

U_
DO

W
N_

ME
M_

NO
OP

CP
U_

NO
OP

_M
EM

_U
P

CP
U_

NO
OP

_M
EM

_D
OW

N
CP

U_
NO

OP
_M

EM
_N

OO
P

Ac ions

−1

0

1

I era ion 1K

(a) CPU Overload

0

10

20

30

Iteration 0

−0.5

0.0

0.5

1.0

1.5

Es
 im

a
ed

 R
ew

ar
d

+
Un

ce
r a

in
 y

I era ion 500

CP
U_

UP
_M

EM
_U

P
CP

U_
UP

_M
EM

_D
OW

N
CP

U_
UP

_M
EM

_N
OO

P
CP

U_
DO

W
N_

ME
M_

UP
CP

U_
DO

W
N_

ME
M_

DO
W

N
CP

U_
DO

W
N_

ME
M_

NO
OP

CP
U_

NO
OP

_M
EM

_U
P

CP
U_

NO
OP

_M
EM

_D
OW

N
CP

U_
NO

OP
_M

EM
_N

OO
P

Ac ions

−1

0

1

I era ion 1K

(b) CPU Overload and Memory Swapping

Figure 4.17: Different Contexts

Measurements: Google traces [173, 224] have enabled research on a broad set of topics, from

workload characterizations [149] to new algorithms for machine assignment [172]. However, they

characterized a month-long trace of non-VM workloads. In this work, on the other hand, we focus

on VM workloads running in enterprise clusters. There has been some recent work on VM work-

loads characterization [53, 115], but mainly in the public cloud setting. Prior work on measure-

ments of enterprise clusters [43] do not quantify issues related to VM resource allocations. Other

measurement studies mainly concentrate on network traffic and communication patterns within

data center networks to reduce bandwidth utilization but do not focus per se on VM workload

characterization [31].

90

Profiling RM Approaches: The prior work on resource management based on profiling ap-

proaches has focused on empirically deriving application demands by online and offline profiles of

real workloads [208, 234, 94].

PseudoApp [202] chooses the right VM size by creating a pseudo application to mimic the

resource consumption of a real application; that is, it runs the same set of distributed components

and executes the same sequence of system calls as those of the real application. CherryPick [9]

leverages Bayesian Optimization to build performance models for various applications, and uses

those models to identify the best (or close-to-the-best) configuration, but using extra profiling runs.

Model-Driven RM Approaches: In general, model-driven approaches focus on building models

to estimate the impact of different resource allocation strategies on the application performance.

Oftentimes, they rely on historical resource demands to train statistical learning models to drive

the allocation decisions [195, 235, 84, 186].

PARIS [228] leverages established machine learning techniques, such as random forests, to

identify the best VM across multiple cloud providers. Ernest [213] is a system to efficiently run

applications on shared infrastructure by choosing the right hardware configuration. Their insight

is that a number of jobs have predictable structure in terms of computation and communication,

thus they build performance models that can predict the running time (or other performance metric

of interest) of jobs on specified hardware configurations. One key difference with our approach is

that they do not adjust VM resources on-the-fly, rather, their work assumes fix-sized instance types

(as is the case of the public cloud), and they aim to choose the optimal instance type (and optimal

number of instances) to run a particular job.

Gmach et al. [90] propose a resource allocation system for data center applications that depends

on predicting their behavior a priori based on the repetitive nature of their workloads. On a similar

note, DejaVu [210] identifies a few workload categories and leverages them to reuse previous re-

source allocations so as to minimize re-allocation overheads. In contrast, we assume our workload

patterns can change over time, thus we propose a contextual bandits model to dynamically adapt

to changes.

91

Soror et al. [192] leverages cost models that are built into database query optimizers to recom-

mend workload-specific VM configurations. However, their framework only works for SQL-like

workloads, as opposed to ours, which is agnostic to the application. Finally, PRESS [92] extracts

dynamic patterns in application resource demands and adjusts their resource allocations automati-

cally using signal processing and statistical learning algorithms. They only tune VM CPU limits,

although they mention their approach is extensible to other resources, such as memory and net-

working.

Adaptive RM Approaches: Some prior work investigate auto-scaling using adaptive control

loops and reinforcement learning [30, 70, 69, 79, 236, 111, 160, 171, 37], though none of the

above use the contextual bandits framework. Other adaptive auto-scaling systems, such as the ones

offered in Google Cloud Platform [93] or Amazon Web Services [10], allow users to maintain

application availability by dynamically scaling their resources according to conditions they define.

For example, users can set target utilization metrics (e.g., average CPU utilization, requests per

second) and the system will then automatically adjust the number of instances as needed to main-

tain those targets (similar to reactive). Such systems mainly focus on horizontal scaling, whereas

our work targets vertical one. In general, these threshold-based systems (either horizontal/vertical)

are simple to implement and use, however their performance depends on the quality of the thresh-

olds [14].

Perhaps the most prominent work on the VM resource allocation problem has been done by

Delimitrou et al. [66, 64]. They mainly use collaborative filtering techniques to classify workloads

using four different classification tasks (scale up/out, heterogeneity, and interference), and they

rely on (small) online workload profiling as well as monitoring tasks for allocation re-adjustment.

Scheduling/Migration Approaches A great deal of previous research into resource management

has focused on VM/task scheduling and migration [158, 29, 229, 65, 177]. They are somewhat

orthogonal to our work, as we focus on the problem of maximizing the resource usage efficiency

of VMs, which should result in easier scheduling, i.e., packing of smaller VMs [98].

92

4.5 Discussion and Future Work

Although we have proposed an initial framework for adjusting vCPUs and memory of VMs on-

the-fly using ML techniques, some natural extensions of this work come to mind, both from a

systems as well as an ML perspective. On the systems front, besides improving our simulator and

adding support for more application-level metrics (e.g., SQL transactions per second), we are also

planning on being able to tune other type of resources, such as networking and storage, as well as

managing other entities, such as containers. Further, including sensitivity analyses of the different

threshold choices (e.g., 25%, 75%), as well as augmenting the experiments with real workloads

would be an obvious step to follow. Regarding ML, apart from experimenting with more complex

models, an interesting step to take would be to enable smarter filtering policies in FS. By borrowing

ideas from active learning literature [183], we could potentially filter the VMs that would provide

the most useful information to our agent. For example, we could pick the instances in a greedy

fashion, according to some informativeness measure used to evaluate all the instances in the cluster,

or select the most “diverse" instances using submodularity [120], which would allow the agent to

have a better coverage of the state space, thus improving generalization and speeding up training.

4.6 Summary

Virtual execution environments enable a more efficient use of server’s resources by consolidating

multiple applications onto the same physical hardware. However, provisioning a VM with more

(or less) resources than it requires can drastically impact its performance as well as that of other

VMs in the cluster.

In this work, we first provided a characterization of resource allocation and utilization of vir-

tual machines from thousands of enterprise clusters running production workloads. Given that

we observed a high degree of overprovisioning and underprovisioning, mainly due to inaccurate

user guesses, as well as significant variability in load demands over time, we proposed ADARES,

an adaptive system that dynamically tunes resources of VMs. ADARES proposes an ML-based

mechanism that uses the contextual bandits framework together with transfer learning to optimize

93

configurations of VMs in a cluster, and exploits cluster, node and VM-level information to pro-

mote efficient resource utilization across VMs. Our empirical results showed that our approach

can significantly improve system utilization without sacrificing performance.

94

5 | PULPO

Latency to end-users and regulatory requirements push large companies to build data centers all

around the world. The resulting data is “born” geographically distributed. On the other hand, many

machine learning applications require a global view of such data in order to achieve the best results.

These types of applications form a new class of learning problems, which we call geo-distributed

machine learning (GDML). Such applications need to cope with: 1) scarce and expensive cross-

data center (X-DC) bandwidth, and 2) growing privacy concerns that are pushing for stricter data

sovereignty regulations.

Current solutions to learning from geo-distributed data sources revolve around the idea of first

centralizing the data in one data center, and then training locally. As machine learning algorithms

are communication-intensive, the cost of centralizing the data is thought to be offset by the lower

cost of intra-data center (in-DC) communication during training.

In this work, we show that the current centralized practice can be far from optimal and propose

an ML-System co-design for enabling geo-distributed training. Herein, we present PULPO, a sys-

tem that treats ML as a first-class citizen, and leverages optimization-based techniques to reduce

X-DC center communication. Further, we argue that the geo-distributed approach PULPO enables

is structurally more amenable to dealing with regulatory constraints, as raw data never leaves the

source data center. Our empirical evaluation on three real datasets shows orders of magnitude im-

provements in terms of cross-data center bandwidth consumption.

95

In summary, the main contributions of this work are:

• We introduce GDML, an important class of learning system problems that deals with geo-

distributed datasets, and provide a study of the relative merits of state-of-the-art centralized

solutions versus geo-distributed alternatives.

• We propose PULPO, a system co-designed with machine learning to enable geo-distributed

machine learning. PULPO builds upon Apache Hadoop YARN [211] and Apache REEF [221],

and extends their functionality to support multi-data center machine learning applications.

We adopt a communication-sparse learning algorithm [139], originally designed to acceler-

ate learning, and leverage it to optimize wide-area bandwidth consumption.

• We present empirical results from both simulations and a real deployment across continents,

which show that, under common conditions, geo-distributed approaches can trade manage-

able penalties in training latency (less than 5×) for massive bandwidth reductions (multiple

orders of magnitude).

We structure this chapter as follows: Section 5.1 formalizes the problem setting. We then

describe the ML-System co-design in Section 5.2 and show evaluation results in Section 5.3. We

present related work in Section 5.4, future work in Section 5.5, and summarize in Section 5.6.

5.1 Problem Formulation

In order to facilitate a study of the state-of-the-art centralized approach in contrast to geo-distributed

alternatives (Figure 5.1), we formalize the problem in two dimensions: 1) we specify assumptions

about the data, its size and partitioning, and 2) we restrict the set of learning problems to the well

known statistical query model class [114].

5.1.1 Data distribution

We assume the dataset D of N examples (xi,yi), where xi ∈ Rd denotes the feature vector and

yi ∈ {−1,1} denotes the label of example i, to exist in p∈ {1, . . . ,P} partitions Dp, each of which is

96

Copy all data to one DC1
2 Run ML algo within DC2

Centralized Learning
(state-of-the-art)

1

DC1 DC2 DC3

1 Run ML algo across DCs

Geo-Distributed Learning
(proposed)

DC1 DC2 DC3

2 1

Figure 5.1: Centralized vs. Geo-distributed Learning

generated in one of P data centers. Those P partitions consist of np examples each, with N =∑p np.

Let d be the dimensionality of the feature vectors and d̄ the average sparsity (number of non-zeros)

per example. The total size of each partition can be (roughly) estimated as sp = np d̄. Although

this approximation serves our purposes, in order to have a more precise estimate of the partition

sizes, we should not rely on a single d̄ value (average instance sparsity across the entire data). This

is because the sparsity of instance vectors may depend on the data center location. For example,

in the case of a recommendation application, the US data center might have more dense feature

vectors (user profiles) than those in a data center in South America.

Further, let p∗ be the index of the largest partition, i.e., p∗ = argmaxp np. Then, the total X-DC

transfer needed to centralize the dataset is:

TC = (N−np∗) d̄ (5.1)

The goal here is to transfer all instances to the data center that holds the largest subset of

instances. Data compression is commonly applied to reduce this size, but only by a constant factor.

97

5.1.2 Learning Task

Herein, we restrict the set of learning problems we consider to those that fit the statistical query

model. This model covers a wide variety of important practical machine learning models, including

both supervised (e.g., linear and logistic regression, support vector machines) and unsupervised

(e.g., k-means clustering) models.

The beauty of algorithms that fit into the statistical query model is that they can be written in

certain summation form, which allows them to be easily parallelized [50]. In the statistical query

model, the learning algorithm is allowed to obtain estimates of statistical properties of the examples

(e.g., sufficient statistics, gradients) but cannot see the examples themselves [78]. In other words,

the algorithm can be phrased purely in terms of statistical queries over the data, and those statistical

queries decompose into the sum of a function applied to each example; a structural property we

can leverage to co-design our system with ML.

Let that function be denoted by fq ∈ { f1, f2, . . . fQ}. A query result Fq is then computed as

Fq = ∑
N
i=1 fq(xi,yi). With the data partitioning, this can be rephrased as

Fq =
P

∑
p=1

np

∑
i=1

fq(xi,yi) (5.2)

In other words, the X-DC transfer per statistical query is the size of the output of its query

function fq, which we denote as sq. The total X-DC transfer then depends on the queries and

the number of such queries issued, nq, as part of the learning task, both of which depend on the

algorithm executed and the dataset. Let us assume we know these for a given algorithm and dataset

combination. Then, we can estimate the total X-DC transfer cost of a fully distributed execution

as:

TD = (P−1)
Q

∑
q=1

nq sq (5.3)

Note that this relies on the cumulative and associative properties of the query aggregation,

i.e., the problem structure, by which we only need to communicate one result of size sq per data

98

center. The data center that aggregates the results does not need to communicate any data over the

wide-area network, thus the P−1 term in Equation (5.3).

With this formalization, the current state-of-the-art approach of centralizing the data relies on

the assumption that TC � TD. However, it is not obvious why this should always be the case, as

the X-DC transfer of the centralized approach TC grows linearly with the dataset size, whereas the

X-DC transfer of a distributed approach TD grows linearly with the size and number of the queries.

Additionally, relatively large partitions per data center typically yield more meaningful statistics

per data center. This, in turn, means that the learning algorithm needs fewer queries to converge,

lowering TD as the dataset size grows given a fixed number of partitions.

Hence, it is apparent that the assumption that TC� TD holds for some, but not all regimes. All

things being equal, it seems that larger datasets would favor the distributed approach. Similarly,

all things being equal, larger query results and algorithms issuing more queries seem to favor the

centralized approach.

In order to study this more precisely, we need to restrict the discussion to a concrete learning

problem for which the queries q, their functions fq and their output sizes sq are known. Further,

the number of such queries can be bounded by invoking the convergence theorems for the chosen

learning algorithm. Herein, we choose linear modeling to be the learning problem for its simplicity

and rich theory. In particular, we consider the l2 regularized linear learning problem.

Let l(w xi,yi) be a continuously differentiable loss function with Lipschitz continuous gradient,

where w ∈ Rd is the weight vector. Let Lp(w) = ∑i∈Dp l(w xi,yi) be the loss associated with data

center p, and L(w) = ∑p Lp(w) be the total loss over all data centers. Our goal is to find w that

minimizes the following objective function, which decomposes per data center:

f (w) =
λ

2
||w||2 +L(w) =

λ

2
||w||2 +∑

p
Lp(w) (5.4)

where λ > 0 is the regularization constant. Depending on the loss chosen, this objective func-

tion covers important cases such as linear support vector machines (hinge loss) and logistic regres-

sion (logistic loss). Learning such model amounts to optimizing Equation (5.4). Many optimization

99

algorithms are available for the task, and in Section 5.2.3 we describe the one we choose.

It is important to note that one common statistical query of all those algorithms is the compu-

tation of the gradient of the loss in Equation (5.4) with respect to w. The size of that gradient (per

partition and globally) is d. Hence, sq for this class of models can be approximated by d. This

allows us to rephrase the trade-off mentioned above. All things being equal, datasets with more

examples (xi,yi) would tend to favor the distributed approach. Similarly, all things being equal,

datasets with higher dimensionality d would generally lean towards the centralized setting.

5.2 System Design

This section describes the co-design of PULPO with machine learning to enable efficient geo-

distributed training. Our system relies on optimization-based techniques to efficiently communi-

cate dataset statistics through the wide-area network, thus reducing X-DC bandwidth consumption.

Herein, we provide a high-level description of the goals that influenced the design of PULPO, the

description of its core components, and the optimization procedure we use to reduce the cross-data

center transfers.

5.2.1 Goals

PULPO is designed to efficiently train machine learning models from geo-distributed datasets. We

design our system considering the following properties:

• Flexibility: We need a flexible system that can run in two regimes, i.e., in-DC and X-DC,

without requiring two separate implementations. Further, our system should not be tied

to any specific algorithm, rather, it should expose a generic framework suitable for geo-

distributed and centralized implementations of, at least, ML algorithms expressible in the

statistical query model class.

• Visibility: The system should provide enough visibility of the underlying network topology

to the application layer, so that algorithm authors’ can explicitly control what to run within a

100

data center and what to run across data centers. Perhaps surprising to software engineers but

not to algorithm developers, our system should make the geo-distribution less transparent by

allowing network-aware placement of tasks.

• Uniformity: The system should be able to obtain resources (CPU cores and RAM) across

different data centers in a uniformly basis. In other words, it should be able to view multiple

data centers as a single one. Although this goal seems to clash with the visibility one, they are

complementary; that is, uniformity refers to resource management whereas visibility focus

on computation and communication patterns.

5.2.2 Components

This section provides an overview of our system and introduce its core components. Figure 5.2

shows a high level overview its three-tier architecture as well as the abstractions each layer pro-

vides.

5.2.2.1 Resource Management: Apache Hadoop YARN

PULPO’s bottom layer consists of a resource manager. A resource manager is a platform that

dynamically leases resources, known as containers, to various competing applications in a cluster.

It acts as a central authority and negotiates with potentially many application masters the access

to those containers [221]. Among the most well-known implementations are Apache Hadoop

YARN [211], Apache Mesos [99] and Google Omega [182]. All of these systems are designed to

operate within one data center and multiplex applications on a collection of shared machines.

In our setting, we need a similar abstraction, but it must span multiple data centers. We build

our solution on top of Apache Hadoop YARN. As part of Microsoft’s effort to scale-out YARN to

Microsoft-scale clusters (tens of thousands of nodes), they have been contributing to Apache a new

architecture that allows to federate multiple clusters [51]. This effort was not originally intended

to operate in a X-DC setting, and as such, was focused on hiding from the application layer the

different sub-clusters. It is worth mentioning that single data center federation is deployed in

101

Figure 5.2: PULPO Architecture

production at scale at Microsoft.

As part of this work, we have been experimenting and extending this system, leveraging its

transparency yet providing enough visibility of the network topology to our application layer. As

a result, we can run a single application that spans different data centers in an efficient manner.

5.2.2.2 Framework: Apache REEF

On top of YARN, PULPO uses Apache REEF [221], which provides the basic control flow for

our application. This middleware provides a generalized control plane to ease the development of

applications on resource managers. REEF provides a control flow master called Driver to appli-

cations, and an execution environment for tasks on containers called Evaluator. Applications are

expressed as event handlers for the Driver to perform task scheduling (including fault handling)

and the task code to be executed in the Evaluators. As part of this work, we extend REEF to

support geo-federated YARN, including scheduling of resources to particular data centers.

REEF provides a group communications library that exposes Broadcast and Reduce operators

similar to Message Passing Interface (MPI) [96]. Like MPI, REEF’s group communications library

is designed for the single data center case. We expand it to cover the X-DC case we study here.

Note that all changes to Apache REEF have been contributed back to the project where appropriate.

102

MG	

…
M1	

… S11	
 S12	
 S1m	

MP	

… SP1	
 SP2	
 SPm	

DC-P
 M2	

… S21	
 S22	
 S2m	

DC-2

DC-1

DC-1

Figure 5.3: Multi-Level Master/Slave Communication Tree with P data centers, each with its own

data center master (Mi) and slaves (Si j). The global master MG is physically located in DC-1. The

solid and dashed lines refer to in-DC and X-DC links respectively.

5.2.2.3 Application Layer: DML / GDML

Statistical query model algorithms can be implemented using nothing more than Broadcast and

Reduce operators [50], where data partitions reside in each machine, and the statistical query is

Broadcast to those, while its result is computed on each machine and then aggregated via Reduce.

Both Broadcast and Reduce operations are usually implemented via communication trees in

order to maximize the overall throughput of the operation. Traditional systems, such as MPI [96]

implementations, derive much of their efficiency from intelligent (and fast) ways to establish these

trees. Different from the in-DC environment where those are typically used, our system needs to

work with network links of vastly different characteristics. X-DC links have higher latency than

in-DC ones, whereas the latter have usually higher bandwidths [22]. Further, WAN links are much

more expensive than intra-data center links, as they are frequently rented or charged-for separately,

in the case of the public cloud.

PULPO addresses these challenges with a heterogeneous, multi-level communication tree. Fig-

ure 5.3 shows an example of the multi-level communication tree we use. A global Broadcast

originates from MG to the data center masters Mi, which in turn do a local Broadcast to the slave

nodes Si j in their own data centers. Conversely, local Reduce operations originate on those slave

nodes, while the data center masters Mi aggregate the data prior to sending it to MG for global

103

MG	

…
M1	

… S11	
 S12	
 S1m	

MP	

… SP1	
 SP2	
 SPm	

M2	

… S21	
 S22	
 S2m	

DC-1

GCG

LCG

LCG

LCG

Figure 5.4: Communication Groups view of the Multi-Level Master/Slave Communication Tree

depicted in Figure 5.3. There are P local communication groups (LCG) that connect the data

center masters (Mi) with their respective slaves (Si j) to enable local Broadcast / Reduce operations.

Further, a single global communication group (GCG) enables the interaction between the global

master MG and the data center masters Mi for global aggregation.

aggregation.

To make this happen, we extend REEF’s communication library in order to create multiple

communication groups, as shown in Figure 5.4. The global master MG together with the data

centers masters Mi, form the global communication group (GCG), where the global Broadcast /

Reduce operations are performed, and used in the outer loop of Algorithm 1—as we shall see

next. Likewise, the slave nodes within each data center and their masters Mi form the local com-

munication groups (LCG), where the local Broadcast / Reduce operations execute, and are used

to optimize the local approximations f̂p of Equation (5.8) (more details next). This mechanism

provides the flexibility to communicate only locally (LCG) or globally between masters (GCG),

and highlights the ML as a first-class citizen property our system embraces.

5.2.3 Optimization-based Approach

Given the iterative nature of ML optimization algorithms, we need to somehow reduce the num-

ber of X-DC iterations if we want our geo-distributed training approach to reduce the wide-

area communication costs when compared to centralized methods. In other words, we need a

104

Algorithm 1 Functional Approximation based Distributed Learning Algorithm (FADL)
Choose w0

for r = 0,1... do

Compute gr (X-DC communication)

Exit if ||gr|| ≤ εg||g0||

for p = 1, ...,P (in parallel) do

Construct f̂p(w) (Equation (5.8))

wp← Optimize f̂p(w) (in-DC communication)

end for

dr← 1
P ∑p wp−wr (X-DC communication)

Line Search to find t (negligible X-DC communication)

wr+1← wr + t dr

end for

communication-efficient algorithm capable of minimizing the communication between the data

centers. It is clear from Equation (5.3) that such an algorithm should try to minimize the number

of queries whose output size is very large. In the case of Equation (5.4), this means that the number

of X-DC gradient computations should be reduced.

Recently, many communication-efficient algorithms have been proposed that trade-off local

computation with communication [5, 114, 35, 232, 105]. Herein, we use the algorithm proposed by

Mahajan et al. [140] to optimize Equation (5.4), shown in Algorithm 1. We choose this algorithm

because experiments show that it performs better than the aforementioned ones, both in terms of

communication and running time [140]. The algorithm was initially designed for running in a

traditional distributed machine learning setting, i.e., single data center.1 In this work, we adapt it

for X-DC training, a novel application that was not originally intended for.

The main idea of the algorithm is to trade-off in-DC computation and communication with

X-DC communication. The minimization of the objective function f (w) is performed using an

1We confirmed this with the first author.

105

iterative descent method in which the rth iteration starts from a point wr, computes a direction dr,

and then performs a line search along that direction to find the next point wr+1 = wr + t dr.

We adapt the algorithm to support GDML in the following manner. Each node in the algorithm

now becomes a data center. All the local computations like gradients and loss function on local

data now involves both computation as well as in-DC communication among the nodes in the

same data center. On the other hand, all global computations like gradient aggregation involves

X-DC communication. This strengthens the need for the two levels of communication and control

described in the previous section, and reinforces the choice of an ML-System co-design to enable

efficient geo-distributed machine learning.

In a departure from communication-heavy methods, this algorithm uses distributed computa-

tion for generating a good search direction dr in addition to the gradient gr. At iteration r, each

data center has the current global weight vector wr and the gradient gr. Using its local data Dp,

each data center can form an approximation f̂p of f . To ensure convergence, f̂p should satisfy a

gradient consistency condition, ∇ f̂p(wr) = gr. The function f̂p is approximately2 optimized using

a method M to get the local weight vector wp, which enables the computation of the local direction

dp = wp−wr. The global update direction is chosen to be dr = 1
P ∑p dp, followed by a line search

to find wr+1.

In each iteration, the computation of the gradient gr and the direction dr requires communi-

cation across data centers. Since each data center has the global approximate view of the full

objective function, the number of iterations required are significantly less than traditional methods,

resulting in orders of magnitude improvements in terms of X-DC communication.

The algorithm offers great flexibility in choosing f̂p and the method M used to optimize it. A

general form of f̂p for Equation (5.4) is given by:

f̂p(w) =
λ

2
||w||2 + L̃p(w)+ L̂p(w) (5.5)

where L̃p is an approximation of the total loss Lp associated with data center p, and L̂p(w) is

2Mahajan et al. [140] proved linear convergence of the algorithm even when the local problems are optimized
approximately.

106

an approximation of the loss across all data centers except p, i.e., L(w)− Lp(w) = ∑q6=p Lq(w).

One can simply use L̃p = Lp, i.e., the exact loss function for data center p. However, Mahajan et

al. [140] showed better results if the local loss function is also approximated. Among the possible

choices suggested, we consider the following quadratic approximations in our work:

L̃p(w) = ∇Lp(wr)(w−wr)+
1
2
(w−wr)T Hr

p(w−wr) (5.6)

L̂p(w) = (∇L(wr)−∇Lp(wr))(w−wr)+
P−1

2
(w−wr)T Hr

p(w−wr) (5.7)

where Hr
p is the Hessian of Lp at wr. Replacing (5.6) + (5.7) in (5.5) we have the following

objective function:

f̂p(w) =
λ

2
||w||2 +gr(w−wr)+

P
2
(w−wr)T Hr

p(w−wr) (5.8)

We use the conjugate gradient (CG) algorithm [185] to optimize (5.8). Note that each iteration

of CG involves a statistical query with output size d to do a hessian-vector computation. However,

this query involves only in-DC communication and computation, whereas for traditional second

order methods like TRON [136], it will involve X-DC communication.

Discussion Let Touter be the number of iterations required by the algorithm to converge. Each

iteration requires two queries with output size sq = d for the gradient and direction computation,

and few queries of output size sq = 1 for the objective function computation in the line search.

Since d� 1, we can ignore the X-DC communication cost for the objective function computation.

Hence, we can rewrite Equation (5.3) as TD = 2 (P−1) d Touter. Therefore, for TD to be less than

TC the following must hold:

2 (P−1) d Touter < (N−np∗) d̄ (5.9)

In practice, the typical value of P (data centers) is relatively small (in the 10s). Since there are

few data centers (i.e., few partitions of the data), the above algorithm will take only few (5-20)

107

outer iterations to converge. In fact, in all our experiments in Section 5.3, the algorithm converges

in less than 7 iterations. This means that as long as the total size of the data is roughly more than

2− 3 orders of magnitude greater than the dimensionality d, which is the typical case for large

datasets, doing optimized geo-distributed learning would reduce the X-DC transfers compared to

the centralized approach.

5.3 Evaluation

We implemented a prototype of PULPO in about 13 kLOC of Java, which allows us to evaluate

the state-of-the-art of centralizing the data before learning in comparison with truly distributed

approaches. In this section, we describe our findings, starting with the setup and definition of the

different methods used, followed by results from both simulated and real deployments.

5.3.1 Setup

Clusters We report experiments on two deployments: a distributed deployment on Azure across

two data centers, and a large centralized cluster on which we simulate a multi-data center setup (2,

4, and 8 data centers). This simulated environment is our main testbed, and we mainly use it for

multi-terabyte scale experiments, which are not cost-effective on public clouds. We use 256 slave

nodes divided into 2-8 simulated data centers in all our simulations. Further, all the experiments

are done with the logistic loss function.

We ground and validate the findings from the simulations on a real cross-continental deploy-

ment on Microsoft Azure. We establish two clusters, one in a data center in Europe and the other

on the U.S. west coast. We deploy two DS12 VMs into each of these clusters. Each of those VMs

has 4 CPU cores and 28 GB of RAM. We establish the site-to-site connectivity through a VPN

tunnel using a High Performance VPN Gateway.3

Datasets We use three datasets of user behavior data in web sites for our evaluation, two of

which are publicly available. All of them are derived from click logs. Table 5.1 summarizes their

3More details in https://azure.microsoft.com/en-us/documentation/articles/vpn-gateway-about-vpngateways/.

https://azure.microsoft.com/en-us/documentation/articles/vpn-gateway-about-vpngateways/

108

Dataset
Examples Features Size

(N) (d) Model Dataset

CRITEO 4B

5M 20MB 1.5TB

10M 40MB 1.5TB

50M 200MB 1.6TB

100M 400MB 1.7TB

WBCTR 730M

8M 32MB 347GB

16M 64MB 362GB

80M 320MB 364GB

160M 640MB 472GB

KAGGLE 46M

0.5M 2MB 8.5GB

1M 4MB 8.5GB

5M 20MB 9GB

Table 5.1: Datasets overview. Dataset sizes reported are after compression. Weights in the models

are represented in single-precision floating-point format (32 bits) with no further compression.

Note that the average sparsity (number of non-zeros) of each of the dataset versions are very similar,

thus we do not observe a significant size change after increasing the number of features.

statistics. CRITEO and KAGGLE are publicly available [56, 110]. The latter is a small subset

of the former, and we use it for the smaller scale experiments in Azure. WBCTR is an internal

Microsoft dataset. We vary the number of features in our experiments using hashing kernels as

suggested in [222].

The dataset sizes reported in Table 5.1 refer to compressed data. The compression and decom-

pression is done using Snappy,4 which enables high-speed compression and decompression with

4For more details refer to https://github.com/xerial/snappy-java.

https://github.com/xerial/snappy-java

109

reasonable compression size. In particular, we achieve compression ratios of around 62-65% for

the CRITEO and WBCTR datasets, and 50% for KAGGLE. Our system performs all computations

using double precision arithmetic, but communicates single precision floats. Hence, model sizes

in Table 5.1 are reported based on single-precision floating point numbers.

In our experiments, we assume the datasets are randomly partitioned across the data centers,

i.e., we assume each data center keeps an approximately equal number of examples. Note that

although this is a strong assumption, as data in different data centers can be distributed differently,

it holds true in some important production use cases we observe. In such cases, load balancing

across data centers forces data to be “randomly” spread across them. However, this is not fully

general, as other important GDML workloads require data to be close to the users (to achieve

low latency interactions), thus strong geographically biases emerge. Besides the dataset sizes, in

practice, data centers can also vary significantly in terms of their bandwidth and computational

resources. We plan on addressing these issues in future work.

Methods We contrast the state-of-the-art approach of centralizing the data prior to learning with

several alternatives, both within the regime requiring data copies and truly distributed:

• centralized, denotes the current state-of-the art, where we copy the data to one data center

prior to training. Based on the data shipping model used, two variants of this approach arise:

– centralized-stream, refers to a streaming copy model where the data is replicated as

it arrives. When the learning job is triggered in a particular data center, the data has

already been transferred there, therefore, no copy time is included in the job running

time, and

– centralized-bulk, refers to a batch replication scheme where the data still needs to be

copied by the time the learning process starts, therefore, the copy time has an impact

on the job running time, i.e., the job needs to wait until the transfer is made to begin

the optimization.

110

• distributed, which builds the multi-level master/slave tree for X-DC learning, but does not

use the efficient algorithm in Section 5.2.3 to optimize Equation (5.4), instead, it optimizes

using TRON [136].

• distributed-fadl, which uses the algorithm introduced in Section 5.2.3 to optimize Equa-

tion (5.4), and similarly to distributed, it performs the optimization in a geo-distributed fash-

ion, i.e., it leaves the data in place and runs a single job that spans training across data

centers.

We observe both flavors of centralized to occur in practice. We simply refer to centralized when

no distinction between its variants is required. This approach (and its variants) only performs

compressed data transfers, and uses the algorithm described in Section 5.2.3 for solving the l2

regularized linear classification problem mentioned in Section 5.1.

Both distributed and distributed-fadl methods represent the furthest departure from the current

state-of-the-art as their execution is truly geo-distributed. Studying results from both allows us

to draw conclusions about the relative merits of the system enabling truly geo-distributed training

(distributed) as well as the optimization-based technique used to minimize the system’s X-DC

bandwidth consumption (distributed-fadl).

5.3.2 Results

In this section we present results from the methods introduced above. We focus on two key metrics:

1) total X-DC transfer size, and 2) latency to model.

5.3.2.1 Simulation

X-DC Transfer Figure 5.5 illustrates the total X-DC transfer of the different methods for dif-

ferent numbers of data centers. We only show two versions of CRITEO and WBCTR, though

the others follow the same patterns. In general, X-DC transfers increase with the number of data

centers as there are more wide-area communication paths. As expected, increasing the model di-

mensionality also impacts the transfers in the distributed versions. In Figure 5.5b, the optimized

111

●

● ●

101

103

2 4 6 8
Data centers

X
−

D
C

 T
ra

ns
fe

r
(G

B
)

● centralized
distributed
distributed−fadl

(a) CRITEO 10M

●

●
●

101

102

103

2 4 6 8
Data centers

X
−

D
C

 T
ra

ns
fe

r
(G

B
)

● centralized
distributed
distributed−fadl

(b) CRITEO 100M

●

●
●

100

101

102

2 4 6 8
Data centers

X
−

D
C

 T
ra

ns
fe

r
(G

B
)

● centralized
distributed
distributed−fadl

(c) WBCTR 16M

●

●
●

102

2 4 6 8
Data centers

X
−

D
C

 T
ra

ns
fe

r
(G

B
)

● centralized
distributed
distributed−fadl

(d) WBCTR 160M

Figure 5.5: X-DC transfer (in GB) versus number of data centers for two versions of CRITEO

and WBCTR datasets (y-axis is in log scale). The method distributed-fadl consumes orders of

magnitude less X-DC bandwidth than any variant (stream or bulk) of the compressed centralized

approach. Moreover, a naive algorithm that does not economize X-DC communication, as is the

case of the distributed method, also reduces transfers with respect to the current centralized state-

of-the-art.

distributed approach (distributed-fadl) performs at least one order of magnitude better than central-

ized in every scenario, achieving the biggest difference (2 orders of magnitude) for 2 data centers.

In this setting, centralized (any variant) transfers half of the compressed data (870 GB) through

the X-DC link before training, whereas distributed-fadl just needs 9 GBs worth of transfers to train

the model. Likewise, in the WBCTR dataset (Figure 5.5d), we see the biggest difference in the 2

data centers scenario (1 order of magnitude). When the data is spread across 8 data centers, cen-

tralized transfers almost the same as distributed. In general, even the non communication-efficient

distributed baseline also outperforms the current practice, centralized, on both datasets.

Objective / X-DC Transfer Trade-off Commercial deployments of machine learning systems

impose deadlines and resource boundaries on the training process. This can make it impossible to

run the algorithm till convergence. Hence, it is interesting to study the performance of the central-

ized and distributed approaches in relationship to their resource consumption. Figure 5.6 shows the

relative objective function over time as a function of X-DC transfers for 2 and 8 data centers on the

CRITEO and WBCTR datasets. We use the relative difference to the optimal function value, cal-

112

●

●

●

●

●
●

10−5

10−3

10−1

10−1 100 101 102 103

X−DC Transfer (GB)

R
el

at
iv

e
ob

j.
fu

nc
tio

n ● centralized
distributed
distributed−fadl

(a) CRITEO 5M - 2DC

●

●

●

●

●
●

10−5

10−3

10−1

100 101 102 103

X−DC Transfer (GB)

R
el

at
iv

e
ob

j.
fu

nc
tio

n ● centralized
distributed
distributed−fadl

(b) CRITEO 5M - 8DC

●

●

●

●

●
●

10−5

10−3

10−1

100 101 102 103

X−DC Transfer (GB)

R
el

at
iv

e
ob

j.
fu

nc
tio

n ● centralized
distributed
distributed−fadl

(c) CRITEO 50M - 2DC

●

●

●

●

●
●

10−5

10−3

10−1

101 102 103

X−DC Transfer (GB)

R
el

at
iv

e
ob

j.
fu

nc
tio

n ● centralized
distributed
distributed−fadl

(d) CRITEO 50M - 8DC

●

●

●
●

10−7

10−4

10−1

10−1 100 101 102

X−DC Transfer (GB)

R
el

at
iv

e
ob

j.
fu

nc
tio

n ● centralized
distributed
distributed−fadl

(e) WBCTR 8M - 2DC

●

●

●
●

10−7

10−4

10−1

100 101 102

X−DC Transfer (GB)

R
el

at
iv

e
ob

j.
fu

nc
tio

n ● centralized
distributed
distributed−fadl

(f) WBCTR 8M - 8DC

●

●

●

●

●

●
●

10−5

10−2

101

100 101 102

X−DC Transfer (GB)

R
el

at
iv

e
ob

j.
fu

nc
tio

n ● centralized
distributed
distributed−fadl

(g) WBCTR 80M - 2DC

●

●

●

●

●

●
●

10−5

10−2

101

101 102

X−DC Transfer (GB)

R
el

at
iv

e
ob

j.
fu

nc
tio

n ● centralized
distributed
distributed−fadl

(h) WBCTR 80M - 8DC

Figure 5.6: Relative objective function (compared to the best) versus X-DC transfer (in GB) for

2 and 8 data centers for two versions of CRITEO and WBCTR datasets (both axis are in log

scale). The method distributed-fadl achieves lower objective values much sooner in terms of X-

DC transfers than the other methods. The centralized objective remains constant with respect to

X-DC transfers throughout the optimization as it starts once the data has been transferred. The

distributed method does incur in more transfers than distributed-fadl, although it also reduces the

overhead of the centralized approach. Increasing the models dimensionality, naturally increases

the X-DC transfers. Note that centralized refers to both of its variants (stream and bulk), and we

only report compressed data transfers for this method.

113

culated as (f − f ∗)/ f ∗, where f ∗ is the minimum value obtained across methods. X-DC transfers

remain constant in the centralized (any variant) method as it starts the optimization after the data

is copied, i.e., no X-DC transfers are made while training. In general, distributed-fadl achieves

lower objective values much sooner in terms of X-DC transfers, which means that this method can

get some meaningful results faster. If an accurate model is not needed (e.g., 10−2 relative objec-

tive function value), distributed-fadl gives a quicker response. As we increase the number of data

centers, X-DC communication naturally increases, which explains the right shift trend in the plots

(e.g., Figures 5.6a and 5.6b).

Storage As the number of data centers increases, centralized (any variant) requires more space

on disk. In particular, assuming the data is randomly partitioned across data centers, centralized

stores at least 1.5× more data than the distributed versions, with a maximum difference of almost

2× when considering 8 data centers. On the other hand, both distributed and distributed-fadl only

need to store the original dataset (1×) throughout the different configurations.

5.3.2.2 Real Deployment

X-DC Transfer To validate our simulation, we include Figure 5.7, which shows the relative

objective function with respect to the X-DC bandwidth for the KAGGLE dataset in 2 Azure data

centers (Western US and Western Europe). These experiments match our findings in the simulated

environment. For the centralized approach, we transfer the data from EU to US, and run the

optimization in the latter data center. Similar to Figure 5.6, the increase in the number of features

causes more X-DC transfers (right shift trend in the plots). The efficient geo-distributed method

distributed-fadl still communicates the least amount of data, almost 2 orders of magnitude less than

the centralized (any variant) approach for the 500k model (Figure 5.7a).

Runtime Figure 5.8 shows the relative objective function over time for the 2 Azure data centers

using the KAGGLE dataset. We normalize the time to the centralized-stream approach, calculated

as t/t∗, where t∗ is the overall time taken by centralized-stream. This method performs the fastest

114

●

●

●

●

●

●
●

10−7

10−5

10−3

10−1

10−1 100

X−DC Transfer (GB)

R
el

at
iv

e
ob

j.
fu

nc
tio

n ● centralized
distributed
distributed−fadl

(a) KAGGLE 500k

●

●

●

●

●

●

10−7

10−5

10−3

10−1

10−1 100

X−DC Transfer (GB)

R
el

at
iv

e
ob

j.
fu

nc
tio

n ● centralized
distributed
distributed−fadl

(b) KAGGLE 1M

●

●

●

●

●

●

●

10−7

10−5

10−3

10−1

10−1 100

X−DC Transfer (GB)

R
el

at
iv

e
ob

j.
fu

nc
tio

n

● centralized
distributed
distributed−fadl

(c) KAGGLE 5M

Figure 5.7: Relative objective function (compared to the best) versus X-DC transfer (in GB) for

the KAGGLE dataset in 2 Azure data centers (both axis are in log scale). The increase in the

model size explains the right shift trend in the plots. The method distributed-fadl consumes the

least amount of X-DC bandwidth, at least 1 order less in every scenario, and 2 when using the 500k

model. The objective/transfer pattern is similar to Figure 5.6. Both distributed methods transfer

much less X-DC data than the centralized state-of-the-art. Note that centralized refers to both of

its flavors (stream and bulk), and only transfers compressed data.

in every version of the dataset (500k, 1M, and 5M features) as the data has already been copied by

the time it starts, i.e., no copy time overhead is added, and represents the lower bound in terms of

running time.

Although the centralized approach always transfers compressed data, we do not take into ac-

count the compression/decompression time for computing the centralized-bulk runtime, which

would have otherwise tied the results to the choice of the compression library. Figures 5.8a, 5.8b,

and 5.8c show that centralized-bulk pays a high penalty for copying the data, it runs in approxi-

mately 8× or more of its stream counterpart.

The communication-efficient distributed-fadl approach executes in 1.3×, 2.4×, and 7.4× of

the centralized-stream baseline for 500k, 1M, and 5M models respectively, which is a remarkable

result given that it transfers orders of magnitude less data (Figure 5.7), and executes in a truly geo-

distributed manner, respecting potentially strict regulatory constraints. Moreover, if we consider

the relative objective function values commonly used in practice to achieve accurate models (10−4,

115

10−7

10−5

10−3

10−1

0 2 4 6 8
Relative Time

R
el

at
iv

e
ob

j.
fu

nc
tio

n centralized−bulk
centralized−stream
distributed
distributed−fadl

(a) KAGGLE 500k

10−7

10−5

10−3

10−1

0 3 6 9 12
Relative Time

R
el

at
iv

e
ob

j.
fu

nc
tio

n centralized−bulk
centralized−stream
distributed
distributed−fadl

(b) KAGGLE 1M

10−7

10−5

10−3

10−1

0 10 20 30
Relative Time

R
el

at
iv

e
ob

j.
fu

nc
tio

n centralized−bulk
centralized−stream
distributed
distributed−fadl

(c) KAGGLE 5M

Figure 5.8: Relative objective function (compared to the best) over time (relative to the centralized-

stream method) for the KAGGLE dataset in 2 Azure data centers (y-axis is in log scale). The

method distributed-fadl beats every approach but centralized-stream. This latter method is the

best case scenario, where the data has already been copied and is available in a single data center

when the job is executed. The distributed-fadl method lies very close to the optimum (centralized-

stream), especially in low-dimensional models and when considering commonly accepted objec-

tive function values (10−4, 10−5). Both distributed and distributed-fadl performance degrades

when the model size increases (as expected), but distributed does so much worse (5.8c), which

further shows that in order to do geo-distributed machine learning, a communication-efficient al-

gorithm is needed.

116

10−5), this method’s convergence time lies in the same ballpark as the lower bound centralized-

stream in terms of running time. Still, distributed-fadl is way ahead in terms of X-DC transfers

(orders of magnitude of savings in X-DC bandwidth), while at the same time it potentially complies

with data sovereignty regulations.

Figure 5.8a shows that distributed-fadl performs very close to the best scenario, matching the

intuition built in Section 5.1 that this method does very well on tasks with (relatively) small models

and (relatively) large number of examples. Furthermore, this efficient method also runs faster than

distributed in every setting, which further highlights the importance and benefits of the ML-System

co-design introduced in Section 5.2.

Finally, distributed performance degrades considerably as the model size increases. In partic-

ular, this method does a poor job when running with 5M features (Figure 5.8c), which concurs

with the intuition behind the state-of-the-art centralized approach: copying the data offsets the

communication-intensive nature of (naive) machine learning algorithms. We see that this intuition

does not hold true for the efficient algorithm described in Section 5.2.3.

5.4 Related Work

We discuss work relevant to PULPO in the areas of distributed systems and ML algorithms that

deal with disperse datasets.

Distributed Systems Prior work on systems that deal with geographically distributed datasets

exists in the literature. The work done by Vulimiri et al. [219, 217] poses the thesis that increasing

global data and scarce X-DC bandwidth, coupled with regulatory concerns, will derail large com-

panies from executing centralized analytics processes. They propose a system that supports SQL

queries for doing X-DC analytics. Unlike our work, they do not target iterative machine learning

workflows, neither do they focus on jobs latency. They mainly discuss reducing WAN data transfer

volume.

Pu et al. [167] proposes a low-latency distributed analytics system called Iridium. Similar to

Vulimiri et al., they focus on pure data analytics and not on machine learning tasks. Another

117

key difference is that Iridium optimizes task and data placement across sites to minimize query

response time, while our system respects stricter sovereignty constraints and does not move raw

data around.

JetStream [169] is a system for wide-area streaming data analysis that performs efficient queries

on data stored “near the edge”. They provide different approximation techniques to reduce the data

size transfers at the expense of accuracy. One of such techniques is dropping some fraction of the

data via sampling. Similar to our system, they only move important data to a centralized location

for global aggregation (in our case, we only move statistics and models), and they compute local

aggregations per site prior to sending (in our case, we perform local optimizations per data center

using the algorithm described in Section 5.2.3). Another streaming application is distributed moni-

toring, which has focused on continuous tracking of complex queries over collections of physically

distributed data streams. Effective solutions in their setting also need to guarantee communication

efficiency over the underlying network [128].

Another line of research has focused on multi-site distributed search engines [20, 81]. Such

work has shown to reduce the resource consumption in query processing as well as user perceived

latency when compared to single-site centralized search engines [41, 113]. It bears some resem-

blance to our work but in the context of information retrieval.

Other existing Big Data processing systems, such as Parameter Server, Graphlab, or Spark [132,

137, 133, 231], efficiently process data in the context of a single data center, which typically em-

ploys a high-bandwidth, relatively low-cost network. To the best of our knowledge, they have not

been designed for multi-data center deployments, where scarce WAN bandwidth makes it imprac-

tical to naively communicate parameters between locations. Instead, our system was specifically

co-designed with ML to perform well on this X-DC setting.

Since our initial work on GDML systems [46, 45], other studies have emerged in the area.

Among the most prominent ones we find Gaia [101], which also focuses on leveraging intelligent

communication mechanisms, with more emphasis on reducing training times rather than X-DC

transfers. Further, the work by Konec̆ný et al. [116, 118, 117] introduces the concept of Federated

Learning, where the idea is to train a global model with data residing in mobile devices, instead of

118

data centers. Their setting is very similar to GDML in the sense that communication efficiency is

of utmost importance, but the cardinality is quite different (millions of devices as opposed to tens

of data centers). This poses other research questions, e.g., what sample of devices to choose at a

given point in time, how to alleviate the fact that mobile devices are frequently offline, etc.

Distributed ML Algorithms Besides the systems solutions, the design of efficient distributed

machine learning algorithms has also been the topic of a broad research agenda [190, 5, 105, 35,

232, 140, 233, 21, 25, 144]. The general principle has been to trade-off computation and commu-

nication, i.e., increase computation in the worker nodes by executing more advanced calculations

between each communication round in order to reduce the number of such rounds.

Some recent work uses model quantization, i.e., reduce the number of bits of the model param-

eters at the expense of potentially losing some accuracy, to reduce the communication cost [197].

Further, a significant fraction of the current research on distributed machine learning pays particu-

lar attention to lowering computational costs by using GPUs [48, 4].

The Terascale method [5] might be the best representative method from the statistical query

model class and is considered a state-of-the-art solver. CoCoA [191, 105, 189] represents the class

of distributed dual methods that, in each outer iteration, solve (in parallel) several local dual op-

timization problems. Alternating Direction Method of Multipliers (ADMM) [35, 232] is a dual

method different from the primal method we use here, however, it also solves approximate prob-

lems in the nodes and iteratively reaches the full batch solution. Follow up work [140] shows that

the algorithm described in Section 5.2.3 performs better than the aforementioned ones, both in

terms of communication rounds and running time.

5.5 Discussion and Future Work

GDML is an interesting, challenging and open area of research. Although we have proposed an

initial and novel geo-distributed approach that shows substantial gains over the centralized state-of-

the-art in many practical settings, many open questions remain, both from a systems and a machine

learning perspective.

119

Perhaps, the most crucial aspect is fault tolerance. With data centers distributed across con-

tinents, consistent network connectivity is harder to ensure than within a single data center, and

network partitioning is more likely to occur. On the other hand, a data center level failure might

completely compromise the centralized approach (if the primary data center is down), while the

geo-distributed solution might continue to operate on the remaining data partitions. There has

been some initial work [157] to make ML algorithms tolerant to missing data (e.g., machine fail-

ures). This work assumes randomly distributed data across partitions. Hence, a failure removes

an unbiased fraction of the data. In production settings, this is the case when multi-data center

deployments are created for load-balancing (e.g., within a region)—we are aware of multiple such

scenarios within Microsoft’s infrastructure. However, cross-region deployments are often dictated

by latency-to-end-user considerations. In such settings, losing a data center means losing a heavily

biased portion of the population (e.g., all users residing in Western US). Even without fail-stop

failures in data centers, the presence of stragglers tasks might impede progress, as we are currently

doing synchronous X-DC updates. The obvious thing to do is do asynchronous updates though it

may work only under mild conditions. Coping with faults, and tolerating transient or persistent

data unavailability and stragglers, as well as understanding the impact of different data distribu-

tions in convergence speeds are still open problems that will likely require both systems and ML

contributions.

In this work we have restricted ourselves to linear models with l2 regularization, and shown

results on logistic regression models. It would be interesting to validate similar observations in

other regularizers (e.g., l1). More broadly, studying geo-distributed solutions that can minimize

X-DC transfers for other complex learning problems such as trees, deep neural networks, etc., is

still an open area of research.

Further, a truly geo-distributed approach surely does no worse than a centralized method when

analyzed from regulatory and data sovereignty angles. Questions in this area arise not only at the

global scale, where different jurisdictions might not allow raw data sharing, but also at the very

small scale, e.g., between data stored in a private cluster and data shared in the cloud. We believe

that studying the setup presented here from a privacy-preserving and regulatory-compliance angle

120

will yield important improvements, and potentially inform regulators.

One aspect we did not cover is related to the work-cycle of these global data repositories and

its impact in the efficacy of geo-distributed learning. If the data gets crunched by x algorithms

once it is gathered into a single data center, including, perhaps, by algorithms that depend on each

others inputs and/or encompass interactive workflows, the centralized methodology might be more

effective than the geo-distributed one. This latter approach would increase communication by x-

fold, whereas the centralized method would not incur in any extra communication. We consider

that a more in-depth study of which approach (centralized or geo-distributed) is more adequate

for different problem settings is still missing. Even more, we have not yet addressed the issue

of whether a hybrid method that combines both centralized and geo-distributed learning could be

more suitable under certain circumstances.

5.6 Summary

Large organizations have a planetary footprint with users scattered in all continents. Latency con-

siderations and regulatory requirements motivate them to build data centers all around the world.

From this, a new class of learning problems emerge, where global learning tasks need to be per-

formed on data “born” in geographically disparate data centers, which we called geo-distributed

machine learning (GDML). To the best of our knowledge, this aspect of machine learning has not

been studied in great detail before, despite being faced by practitioners on a daily basis.

In this work, we introduced and formalized this problem, and challenged common assumptions

and practices. We then presented PULPO, a system co-designed with machine learning that enables

efficient geo-distributed training. In particular, PULPO treats ML as a first-class citizen by leverag-

ing optimization-based techniques in order to reduce X-DC center communication. Our empirical

results showed that our geo-distributed system, combined with communication-parsimonious al-

gorithms, can deliver a substantial reduction in costly and scarce cross data center bandwidth.

121

6 | Conclusions

Distributed systems consist of many interconnected components that interact with each other to

perform certain task(s). Many of these systems typically rely on heuristics or sets of rules to make

decisions, as well as carefully-engineered analytical models. However, their design is nontrivial.

The same system may need to work under widely different conditions, and handle heteroge-

neous workloads that might be non-stationary and change over time. All these, together with the

intrinsic complexity driven by the large number of components, and the irregular interactions and

resource needs, make it difficult to reason about distributed systems’ performance in general.

In this thesis, we proposed optimizing distributed systems using machine learning techniques,

in order to bridge the gap of systems performance and make them more efficient and responsive

to varying operating conditions. Depending on the control we have on the system itself and the

characteristics and constraints of the problem domain, we identified three main modeling strategies.

First, in black-box distributed systems, where we do not have much control over the internals

but instead we can only scratch the surface and alter some of the decision-making processes, ma-

chine learning can be used as an enabler for new system policies: ML-based policies. In such

a role, ML would not be as tightly integrated to the underlying system itself, therefore, it may

face situations where it is not aware of how the system is doing and receive delayed performance

feedback. In those cases, we proposed using reinforcement learning-based techniques.

Second, in gray-box distributed systems, where we have somewhat more control and can alter

their internals, machine learning can be used to provide new system mechanisms: ML-based mech-

anisms. This puts ML in a more powerful position within the system, which may allow it to have

122

fine-grained understanding of what is happening and receive immediate performance indicators. In

such cases, we justified the use of bandit-based modeling approaches.

Third, in white-box distributed systems, where we have full control, we can empower machine

learning to play an even more fundamental role: treat ML as a first-class citizen. Herein, we

proposed an ML-System co-design to enable ML-aware systems and systems-aware ML in order to

promote a new generation of intrinsically smart, self-tuning, and self-adaptive systems.

The main contribution of this thesis was the design, implementation, augmentation, and eval-

uation of three distributed systems that illustrated the impact of these machine learning-based op-

timizations: 1) CURATOR, a framework that safeguards distributed storage systems’ health and

performance leveraging ML-based policies to schedule background maintenance tasks using re-

inforcement learning, 2) ADARES, an adaptive system that relies on an ML-based mechanism to

dynamically adjust virtual machine resources in virtual executing environments using bandit-based

techniques, and 3) PULPO, a federation-based system co-designed with machine learning optimiza-

tion techniques to efficiently train models across different data centers.

Each system instantiated appropriate ML models for the task at hand, alleviating systems de-

signers from the responsibility of manually tuning rules and handcrafting complex analytical mod-

els. Along the way, we leveraged already-collected data and problem structure to perform the

optimizations and accelerate training. Our evaluations on real clusters showed how our formula-

tions resulted in improved distributed systems’ efficiency and performance, and allowed them to

cope with heterogeneity in workloads and resource needs, as well as adapt to time-varying patterns.

BIBLIOGRAPHY 123

Bibliography

[1] Prashanth L. A. and Shalabh Bhatnagar. “Reinforcement Learning With Function Approxi-

mation for Traffic Signal Control”. In: IEEE Trans. Intelligent Transportation Systems 12.2

(2011), pp. 412–421.

[2] Prashanth L. A. and Shalabh Bhatnagar. “Threshold Tuning Using Stochastic Optimization

for Graded Signal Control”. In: IEEE Trans. Vehicular Technology 61.9 (2012), pp. 3865–

3880.

[3] Prashanth L. A., Abhranil Chatterjee, and Shalabh Bhatnagar. “Adaptive Sleep-Wake Con-

trol using Reinforcement Learning in Sensor Networks”. In: Sixth International Conference

on Communication Systems and Networks, COMSNETS 2014, Bangalore, India, January

6-10, 2014. 2014, pp. 1–8.

[4] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,

Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,

Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. “Tensor-

Flow: A system for large-scale machine learning”. In: 12th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI 16). 2016, pp. 265–283.

[5] Alekh Agarwal et al. “A Reliable Effective Terascale Linear Learning System”. In: JMLR

15 (2014).

BIBLIOGRAPHY 124

[6] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert E. Schapire.

“Taming the monster: A fast and simple algorithm for contextual bandits”. In: In Proceed-

ings of the 31st International Conference on Machine Learning (ICML-14. 2014, pp. 1638–

1646.

[7] Rajeev Agrawal. “Sample Mean Based Index Policies with O(log n) Regret for the Multi-

Armed Bandit Problem”. In: Advances in Applied Probability 27.4 (1995), pp. 1054–1078.

[8] Shipra Agrawal and Navin Goyal. “Thompson Sampling for Contextual Bandits with Lin-

ear Payoffs”. In: Proceedings of the 30th International Conference on Machine Learning.

Vol. 28. Proceedings of Machine Learning Research 3. PMLR, 2013, pp. 127–135.

[9] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan

Yu, and Ming Zhang. “Cherrypick: Adaptively Unearthing the Best Cloud Configurations

for Big Data Analytics”. In: Proceedings of the 14th USENIX Conference on Networked

Systems Design and Implementation. NSDI’17. USENIX Association, 2017, pp. 469–482.

[10] Amazon Web Services Auto Scaling. https : / / aws . amazon . com / autoscaling/. Accessed:

11-18-2018.

[11] Moore Andrew. Reinforcement Learning, Tutorial Slides by Andrew Moore. https://www.

autonlab.org/tutorials/rl.html. Accessed: 11-18-2018.

[12] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bos-

boom, Una-May O’Reilly, and Saman Amarasinghe. “OpenTuner: An Extensible Frame-

work for Program Autotuning”. In: Proceedings of the 23rd International Conference on

Parallel Architectures and Compilation. ACM, 2014, pp. 303–316.

[13] Jason Ansel, Maciej Pacula, Yee Lok Wong, Cy Chan, Marek Olszewski, Una-May O’Reilly,

and Saman Amarasinghe. “SiblingRivalry: Online Autotuning Through Local Competi-

tions”. In: Proceedings of the 2012 International Conference on Compilers, Architectures

and Synthesis for Embedded Systems. CASES ’12. ACM, 2012, pp. 91–100.

https://aws.amazon.com/autoscaling/
https://www.autonlab.org/tutorials/rl.html
https://www.autonlab.org/tutorials/rl.html

BIBLIOGRAPHY 125

[14] Hamid Arabnejad, Claus Pahl, Pooyan Jamshidi, and Giovani Estrada. “A Comparison

of Reinforcement Learning Techniques for Fuzzy Cloud Auto-Scaling”. In: Proceedings

of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.

CCGrid ’17. Madrid, Spain: IEEE Press, 2017, pp. 64–73.

[15] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. “A

Brief Survey of Deep Reinforcement Learning”. In: CoRR (2017).

[16] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. “Finite-time Analysis of the Multi-

armed Bandit Problem”. In: Mach. Learn. 47.2-3 (2002), pp. 235–256.

[17] Aditya Auradkar et al. “Data infrastructure at linkedIn”. In: ICDE. 2012.

[18] Jens Axboe. Flexible I/O Tester. https://github.com/axboe/fio. 2011.

[19] Haldun Aytug, Siddhartha Bhattacharyya, Gary J. Kochlet, and Jane L. Snowdon. “A Re-

view of Machine Learning in Scheduling”. In: IEEE Transactions on Engineering Man-

agement (1994).

[20] Ricardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vassilis Plachouras, and Luca

Telloli. “On the Feasibility of Multi-site Web Search Engines”. In: Proceedings of the 18th

ACM Conference on Information and Knowledge Management. CIKM ’09. Hong Kong,

China: ACM, 2009, pp. 425–434.

[21] Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay Mansour. “Distributed Learn-

ing, Communication Complexity and Privacy”. In: COLT 2012 - The 25th Annual Confer-

ence on Learning Theory, June 25-27, 2012, Edinburgh, Scotland. 2012, pp. 26.1–26.22.

[22] Hitesh Ballani et al. “Towards Predictable Datacenter Networks”. In: SIGCOMM. 2011.

[23] Ishan Banerjee, Fei Guo, Kiran Tati, and Rajesh Venkatasubramanian. Memory Overcom-

mitment in the ESX Server. 2011.

[24] Sean Kenneth Barker and Prashant Shenoy. “Empirical Evaluation of Latency-sensitive

Application Performance in the Cloud”. In: Proceedings of the First Annual ACM SIGMM

Conference on Multimedia Systems. MMSys ’10. ACM, 2010, pp. 35–46.

https://github.com/axboe/fio

BIBLIOGRAPHY 126

[25] A. Bar-Or, D. Keren, A. Schuster, and R. Wolff. “Hierarchical Decision Tree Induction in

Distributed Genomic Databases”. In: IEEE Transactions on Knowledge and Data Engi-

neering – Special Issue on Mining Biological Data 17.8 (Aug. 2005).

[26] Daniel S. Berger. “Towards Lightweight and Robust Machine Learning for CDN Caching”.

In: Proceedings of the 17th ACM Workshop on Hot Topics in Networks, HotNets 2018,

Redmond, WA, USA, November 15-16, 2018. 2018, pp. 134–140.

[27] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scien-

tific, 1996.

[28] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire. “Con-

textual Bandit Algorithms with Supervised Learning Guarantees”. In: Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Statistics. Ed. by Geof-

frey Gordon, David Dunson, and Miroslav Dudík. Vol. 15. Proceedings of Machine Learn-

ing Research. PMLR, Apr. 2011, pp. 19–26.

[29] Norman Bobroff, Andrzej Kochut, and Kirk A. Beaty. “Dynamic Placement of Virtual Ma-

chines for Managing SLA Violations.” In: Integrated Network Management. IEEE, 2007,

pp. 119–128.

[30] Peter Bodik, Rean Griffith, Charles Sutton, Armando Fox, Michael I. Jordan, and David

A. Patterson. “Automatic Exploration of Datacenter Performance Regimes”. In: Proceed-

ings of the 1st Workshop on Automated Control for Datacenters and Clouds. ACDC ’09.

Barcelona, Spain: ACM, 2009, pp. 1–6.

[31] Peter Bodık, Ishai Menache, Mosharaf Chowdhury, Pradeepkumar Mani, David A. Maltz,

and Ion Stoica. “Surviving Failures in Bandwidth-constrained Datacenters”. In: Proceed-

ings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architec-

tures, and Protocols for Computer Communication. SIGCOMM ’12. ACM, 2012, pp. 431–

442.

BIBLIOGRAPHY 127

[32] Edward Bortnikov, Ari Frank, Eshcar Hillel, and Sriram Rao. “Predicting Execution Bot-

tlenecks in Map-reduce Clusters”. In: Proceedings of the 4th USENIX Conference on Hot

Topics in Cloud Ccomputing. HotCloud’12. USENIX Association, 2012.

[33] Léon Bottou. “Large-scale Machine Learning with Stochastic Gradient Descent”. In: COMP-

STAT. 2010.

[34] Justin A. Boyan and Michael L. Littman. “Packet Routing in Dynamically Changing Net-

works: A Reinforcement Learning Approach”. In: Proceedings of the 6th International

Conference on Neural Information Processing Systems. NIPS’93. Denver, Colorado: Mor-

gan Kaufmann Publishers Inc., 1993, pp. 671–678.

[35] Stephen Boyd et al. “Distributed Optimization and Statistical Learning via the Alternating

Direction Method of Multipliers”. In: Found. Trends Mach. Learn. 3.1 (Jan. 2011).

[36] Leo Breiman. “Random Forests”. In: Mach. Learn. 45.1 (2001), pp. 5–32.

[37] X. Bu, J. Rao, and C. Xu. “Coordinated Self-Configuration of Virtual Machines and Ap-

pliances Using a Model-Free Learning Approach”. In: IEEE Transactions on Parallel and

Distributed Systems 24.4 (2013), pp. 681–690.

[38] Sébastien Bubeck and Nicolò Cesa-Bianchi. “Regret Analysis of Stochastic and Non-

stochastic Multi-armed Bandit Problems”. In: Foundations and Trends in Machine Learn-

ing 5.1 (2012), pp. 1–122.

[39] Jacques Bughin, Eric Hazan, Sree Ramaswamy, Michael Chui, Tera Allas, Peter Dahlstrom,

Nicolaus Henke, and Monica Trench. Artificial Intelligence, The Next Digital Frontier.

2017.

[40] Christopher J. C. Burges. “A Tutorial on Support Vector Machines for Pattern Recogni-

tion”. In: Data Min. Knowl. Discov. 2.2 (1998), pp. 121–167.

[41] Berkant Barla Cambazoglu and Ricardo Baeza-Yates. “Scalability Challenges in Web Search

Engines”. In: (2011). Ed. by Massimo Melucci and Ricardo Baeza-Yates, pp. 27–50.

BIBLIOGRAPHY 128

[42] Ignacio Cano, Srinivas Aiyar, Varun Arora, Manosiz Bhattacharyya, Akhilesh Chaganti,

Chern Cheah, Brent N. Chun, Karan Gupta, Vinayak Khot, and Arvind Krishnamurthy.

“Curator: Self-Managing Storage for Enterprise Clusters”. In: 14th USENIX Symposium

on Networked Systems Design and Implementation, NSDI 2017, Boston, MA, USA, March

27-29, 2017. 2017, pp. 51–66.

[43] Ignacio Cano, Srinivas Aiyar, and Arvind Krishnamurhty. “Characterizing Private Clouds:

A Large-Scale Empirical Analysis of Enterprise Clusters”. In: Proceedings of the Seventh

ACM Symposium on Cloud Computing. SoCC ’16. Santa Clara, CA, USA: ACM, 2016,

pp. 29–41.

[44] Ignacio Cano, Lequn Chen, Pedro Fonseca, Tianqi Chen, Chern Cheah, Karan Gupta,

Ramesh Chandra, and Arvind Krishnamurthy. “ADARES: Adaptive Resource Manage-

ment for Virtual Machines”. In: CoRR (2018).

[45] Ignacio Cano, Markus Weimer, Dhruv Mahajan, Carlo Curino, and Giovanni Matteo Fu-

marola. “Towards Geo-Distributed Machine Learning”. In: CoRR abs/1603.09035 (2016).

URL: http://arxiv.org/abs/1603.09035.

[46] Ignacio Cano, Markus Weimer, Dhruv Mahajan, Carlo Curino, and Giovanni Matteo Fu-

marola. “Towards Geo-Distributed Machine Learning”. In: Learning Systems Workshop at

NIPS 2015. 2015.

[47] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. “AuTO: Scaling Deep Reinforcement

Learning for Datacenter-scale Automatic Traffic Optimization”. In: Proceedings of the

2018 Conference of the ACM Special Interest Group on Data Communication. SIGCOMM

’18. ACM, 2018, pp. 191–205.

[48] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing

Xu, Chiyuan Zhang, and Zheng Zhang. “MXNet: A Flexible and Efficient Machine Learn-

ing Library for Heterogeneous Distributed Systems”. In: CoRR (2015).

http://arxiv.org/abs/1603.09035

BIBLIOGRAPHY 129

[49] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. “Project

Adam: Building an Efficient and Scalable Deep Learning Training System”. In: USENIX

Symposium on Operating Systems Design and Implementation (OSDI 14). USENIX Asso-

ciation, 2014, pp. 571–582.

[50] Cheng-tao Chu et al. “Map-Reduce for Machine Learning on Multicore”. In: NIPS. 2007.

[51] Apache Hadoop community. “Scaling out YARN via Federation”. In: https://issues.apache.

org/jira/browse/YARN-2915. 2016.

[52] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”. In: Mach. Learn. 20.3

(1995), pp. 273–297.

[53] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura, and

Ricardo Bianchini. “Resource Central: Understanding and Predicting Workloads for Im-

proved Resource Management in Large Cloud Platforms”. In: Proceedings of the 26th

ACM Symposium on Operating Systems Principles. 2017.

[54] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura, and

Ricardo Bianchini. “Resource Central: Understanding and Predicting Workloads for Im-

proved Resource Management in Large Cloud Platforms”. In: Proceedings of the 26th

Symposium on Operating Systems Principles. SOSP ’17. ACM, 2017, pp. 153–167.

[55] CPU hotplug in the Kernel. https://www.kernel.org/doc/html/v4.14/core-api/cpu_hotplug.

html. Accessed: 11-19-2018.

[56] Criteo Labs. “Terabyte Click Logs”. In: (2015). http : / / labs . criteo . com / downloads /

download-terabyte-click-logs/. Accessed 11-19-2018.

[57] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather. “End-to-End Deep Learning of

Optimization Heuristics”. In: 2017 26th International Conference on Parallel Architectures

and Compilation Techniques (PACT). 2017, pp. 219–232.

[58] Peter Dayan. “The Convergence of TD(λ) for General λ”. In: Machine Learning 8 (1992),

pp. 341–362.

https://issues.apache.org/jira/browse/YARN-2915
https://issues.apache.org/jira/browse/YARN-2915
https://www.kernel.org/doc/html/v4.14/core-api/cpu_hotplug.html
https://www.kernel.org/doc/html/v4.14/core-api/cpu_hotplug.html
http://labs.criteo.com/downloads/download-terabyte-click-logs/
http://labs.criteo.com/downloads/download-terabyte-click-logs/

BIBLIOGRAPHY 130

[59] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on Large

Clusters”. In: Commun. ACM 51.1 (2008), pp. 107–113.

[60] DeepMind AI Reduces Google Data Centre Cooling Bill by 40%. https://deepmind.com/

blog/deepmind-ai- reduces-google-data-centre-cooling-bill-40/. Accessed 11-12-2018.

2016.

[61] Ofer Dekel. “From Online to Batch Learning with Cutoff-Averaging”. In: Advances in

Neural Information Processing Systems 21. Ed. by D. Koller, D. Schuurmans, Y. Bengio,

and L. Bottou. Curran Associates, Inc., 2009, pp. 377–384.

[62] Ofer Dekel and Yoram Singer. “Data-Driven Online to Batch Conversions”. In: Advances

in Neural Information Processing Systems 18. Ed. by Y. Weiss, B. Schölkopf, and J. C.

Platt. MIT Press, 2006, pp. 267–274.

[63] Christina Delimitrou. “Improving Resource Efficiency in Cloud Computing”. PhD thesis.

Stanford University, 2015.

[64] Christina Delimitrou and Christos Kozyrakis. “HCloud: Resource-Efficient Provisioning

in Shared Cloud Systems”. In: Proceedings of the Twenty-First International Conference

on Architectural Support for Programming Languages and Operating Systems. ASPLOS

’16. Atlanta, Georgia, USA: ACM, 2016, pp. 473–488.

[65] Christina Delimitrou and Christos Kozyrakis. “Paragon: QoS-aware Scheduling for Het-

erogeneous Datacenters”. In: Proceedings of the Eighteenth International Conference on

Architectural Support for Programming Languages and Operating Systems. ASPLOS ’13.

Houston, Texas, USA: ACM, 2013, pp. 77–88.

[66] Christina Delimitrou and Christos Kozyrakis. “Quasar: Resource-efficient and QoS-aware

Cluster Management”. In: Proceedings of the 19th International Conference on Architec-

tural Support for Programming Languages and Operating Systems. ASPLOS ’14. Salt

Lake City, Utah, USA: ACM, 2014, pp. 127–144.

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

BIBLIOGRAPHY 131

[67] Demystifying GDPR: Separating fact from fiction. https://venturebeat.com/2018/05/20/

demystifying-gdpr-separating-fact-from-fiction/. Accessed: 11-21-2018.

[68] John Dunagan, Alice X. Zheng, and Daniel R. Simon. “Heat-ray: Combating Identity

Snowball Attacks Using Machinelearning, Combinatorial Optimization and Attack Graphs”.

In: Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles.

SOSP ’09. ACM, 2009, pp. 305–320.

[69] Xavier Dutreilh, Sergey Kirgizov, Olga Melekhova, Jacques Malenfant, Nicolas Rivierre,

and Isis Truck. “Using Reinforcement Learning for Autonomic Resource Allocation in

Clouds: towards a fully automated workflow”. In: 7th International Conference on Auto-

nomic and Autonomous Systems. May 2011, pp. 67–74.

[70] Xavier Dutreilh, Aurélien Moreau, Jacques Malenfant, Nicolas Rivierre, and Isis Truck.

“From Data Center Resource Allocation to Control Theory and Back”. In: Proceedings

of the 2010 IEEE 3rd International Conference on Cloud Computing. CLOUD ’10. IEEE

Computer Society, 2010, pp. 410–417.

[71] Jonathan Eastep, David Wingate, and Anant Agarwal. “Smart Data Structures: An Online

Machine Learning Approach to Multicore Data Structures”. In: Proceedings of the 8th In-

ternational Conference on Autonomic Computing, ICAC 2011, Karlsruhe, Germany, June

14-18, 2011. 2011, pp. 11–20.

[72] Jonathan Eastep, David Wingate, Marco D. Santambrogio, and Anant Agarwal. “Smart-

locks: Lock Acquisition Scheduling for Self-Aware Synchronization”. In: Proceedings of

the 7th International Conference on Autonomic Computing. 2010.

[73] John K. Edwards, Daniel Ellard, Craig Everhart, Robert Fair, Eric Hamilton, Andy Kahn,

Arkady Kanevsky, James Lentini, Ashish Prakash, Keith A. Smith, and Edward Zayas.

“FlexVol: Flexible, Efficient File Volume Virtualization in WAFL”. In: USENIX 2008 An-

nual Technical Conference. ATC’08. Boston, Massachusetts: USENIX Association, 2008,

pp. 129–142.

https://venturebeat.com/2018/05/20/demystifying-gdpr-separating-fact-from-fiction/
https://venturebeat.com/2018/05/20/demystifying-gdpr-separating-fact-from-fiction/

BIBLIOGRAPHY 132

[74] EMC. EMC Isilon OneFS: A Technical Overview. 2016.

[75] European Commission press release. Commission to pursue role as honest broker in future

global negotiations on Internet Governance. http://europa.eu/rapid/press-release_IP-14-

142_en.htm. Accessed 11-19-2018.

[76] Benjamin Farley, Ari Juels, Venkatanathan Varadarajan, Thomas Ristenpart, Kevin D. Bow-

ers, and Michael M. Swift. “More for Your Money: Exploiting Performance Heterogeneity

in Public Clouds”. In: Proceedings of the Third ACM Symposium on Cloud Computing.

SoCC ’12. San Jose, California: ACM, 2012.

[77] Alexandra Fedorova, David Vengerov, and Daniel Doucette. “Operating system Scheduling

on Heterogeneous Core Systems”. In: Proceedings of 2007 Operating System Support for

Heterogeneous Multicore Architectures. 2007.

[78] V. Feldman. “A Complete Characterization of Statistical Query Learning with Applications

to Evolvability”. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Sci-

ence(FOCS). Oct. 2010, pp. 375–384.

[79] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo Fonseca.

“Jockey: Guaranteed Job Latency in Data Parallel Clusters”. In: Proceedings of the 7th

ACM European Conference on Computer Systems. EuroSys ’12. ACM, 2012, pp. 99–112.

[80] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Cardwell, Y.

Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh Govindan. “Reducing

Web Latency: The Virtue of Gentle Aggression”. In: Proceedings of the ACM SIGCOMM

2013 Conference on SIGCOMM. SIGCOMM ’13. ACM, 2013, pp. 159–170.

[81] Guillem Francès, Xiao Bai, B. Barla Cambazoglu, and Ricardo Baeza-Yates. “Improving

the Efficiency of Multi-site Web Search Engines”. In: Proceedings of the 7th ACM Inter-

national Conference on Web Search and Data Mining. WSDM ’14. New York, New York,

USA: ACM, 2014, pp. 3–12.

http://europa.eu/rapid/press-release_IP-14-142_en.htm
http://europa.eu/rapid/press-release_IP-14-142_en.htm

BIBLIOGRAPHY 133

[82] Jerome H. Friedman. “Greedy Function Approximation: A Gradient Boosting Machine”.

In: Annals of Statistics 29 (2000), pp. 1189–1232.

[83] Errin W. Fulp, Glenn A. Fink, and Jereme N. Haack. “Predicting Computer System Failures

Using Support Vector Machines”. In: Proceedings of the First USENIX Conference on

Analysis of System Logs. WASL’08. USENIX Association, 2008.

[84] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L. Wiener, Armando Fox,

Michael Jordan, and David Patterson. “Predicting Multiple Metrics for Queries: Better

Decisions Enabled by Machine Learning”. In: Proceedings of the 2009 IEEE International

Conference on Data Engineering. ICDE ’09. IEEE Computer Society, 2009, pp. 592–603.

[85] Javier Garcıa and Fernando Fernández. “A Comprehensive Survey on Safe Reinforcement

Learning”. In: J. Mach. Learn. Res. (2015), pp. 1437–1480.

[86] Gartner. Gartner Says By 2020, Artificial Intelligence Will Create More Jobs Than It Elim-

inates. https://www.gartner.com/newsroom/id/3837763. Accessed 11-9-2018. 2017.

[87] GDPR goes live this week. What happens next? https://venturebeat.com/2018/05/22/gdpr-

goes-live-tomorrow-what-happens-next/. Accessed: 11-21-2018.

[88] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google File System”. In:

Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles. SOSP

’03. Bolton Landing, NY, USA: ACM, 2003, pp. 29–43.

[89] Gluster. Cloud Storage for the Modern Data Center: An Introduction to Gluster Architec-

ture. 2011.

[90] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. “Workload Anal-

ysis and Demand Prediction of Enterprise Data Center Applications”. In: Proceedings of

the 2007 IEEE 10th International Symposium on Workload Characterization. IISWC ’07.

IEEE Computer Society, 2007, pp. 171–180.

[91] Anna Goldie, Azalia Mirhoseini, Jonathan Raiman, Kevin Swersky, and Milad Hashemi.

ML4Systems Workshop. http://mlforsystems.org/. Accessed 11-9-2018. 2018.

https://www.gartner.com/newsroom/id/3837763
https://venturebeat.com/2018/05/22/gdpr-goes-live-tomorrow-what-happens-next/
https://venturebeat.com/2018/05/22/gdpr-goes-live-tomorrow-what-happens-next/
http://mlforsystems.org/

BIBLIOGRAPHY 134

[92] Zhenhuan Gong, Xiaohui Gu, and J. Wilkes. “PRESS: PRedictive Elastic ReSource Scaling

for cloud systems”. In: 2010 International Conference on Network and Service Manage-

ment. 2010, pp. 9–16.

[93] Google Cloud Platform AutoScaler. https://cloud.google.com/compute/docs/autoscaler/.

Accessed: 11-10-2018.

[94] Sriram Govindan, Jeonghwan Choi, Bhuvan Urgaonkar, Anand Sivasubramaniam, and An-

drea Baldini. “Statistical Profiling-based Techniques for Effective Power Provisioning in

Data Centers”. In: Proceedings of the 4th ACM European Conference on Computer Sys-

tems. EuroSys ’09. ACM, 2009, pp. 317–330.

[95] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. “The Cost of a

Cloud: Research Problems in Data Center Networks”. In: SIGCOMM Comput. Commun.

Rev. 39.1 (Dec. 2008), pp. 68–73.

[96] William D. Gropp et al. MPI : the complete reference. Vol. 2. , The MPI-2 extensions. 1998.

[97] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz, Jichuan Chang,

Christos Kozyrakis, and Parthasarathy Ranganathan. “Learning Memory Access Patterns”.

In: Proceedings of the 35th International Conference on Machine Learning. Vol. 80. Pro-

ceedings of Machine Learning Research. PMLR, 2018, pp. 1919–1928.

[98] Fabien Hermenier, Julia Lawall, and Gilles Muller. “BtrPlace: A Flexible Consolidation

Manager for Highly Available Applications”. In: IEEE Trans. Dependable Secur. Comput.

10.5 (2013), pp. 273–286.

[99] Benjamin Hindman et al. “Mesos: A Platform for Fine-grained Resource Sharing in the

Data Center”. In: NSDI. 2011.

[100] Henry Hoffmann. “JouleGuard: energy guarantees for approximate applications.” In: SOSP.

Ed. by Ethan L. Miller and Steven Hand. ACM, 2015, pp. 198–214.

https://cloud.google.com/compute/docs/autoscaler/

BIBLIOGRAPHY 135

[101] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R. Ganger,

Phillip B. Gibbons, and Onur Mutlu. “Gaia: Geo-Distributed Machine Learning Approach-

ing LAN Speeds”. In: 14th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 17). USENIX Association, 2017, pp. 629–647.

[102] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. “On the Performance Variability of

Production Cloud Services”. In: Proceedings of the 2011 11th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing. CCGRID ’11. IEEE Computer Society,

2011, pp. 104–113.

[103] Engin Ipek, Onur Mutlu, José Martınez, and Rich Caruana. “Self-Optimizing Memory

Controllers: A Reinforcement Learning Approach”. In: Proceedings of the 35th Annual

International Symposium on Computer Architecture. ISCA ’08. IEEE Computer Society,

2008, pp. 39–50.

[104] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and Andrew

Goldberg. “Quincy: Fair Scheduling for Distributed Computing Clusters”. In: Proceedings

of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles. SOSP ’09. Big

Sky, Montana, USA: ACM, 2009, pp. 261–276.

[105] Martin Jaggi et al. “Communication-Efficient Distributed Dual Coordinate Ascent”. In:

NIPS. 2014.

[106] Kevin G Jamieson, Lalit Jain, Chris Fernandez, Nicholas J. Glattard, and Rob Nowak.

“NEXT: A System for Real-World Development, Evaluation, and Application of Active

Learning”. In: Advances in Neural Information Processing Systems 28. 2015, pp. 2656–

2664.

[107] Junchen Jiang, Shijie Sun, Vyas Sekar, and Hui Zhang. “Pytheas: Enabling Data-driven

Quality of Experience Optimization Using Group-based Exploration-exploitation”. In: Pro-

ceedings of the 14th USENIX Conference on Networked Systems Design and Implementa-

tion. NSDI’17. Boston, MA, USA: USENIX Association, 2017, pp. 393–406.

BIBLIOGRAPHY 136

[108] Court of Justice of the European Union. “The Court of Justice declares that the Commis-

sion’s US Safe Harbour Decision is invalid”. In: (2015). http://g8fip1kplyr33r3krz5b97d1.

wpengine.netdna-cdn.com/wp-content/uploads/2015/10/schrems-judgment.pdf. Accessed

19-11-2018.

[109] Tomer Kaftan, Magdalena Balazinska, Alvin Cheung, and Johannes Gehrke. “Cuttlefish: A

Lightweight Primitive for Adaptive Query Processing”. In: CoRR abs/1802.09180 (2018).

[110] Kaggle Criteo Labs. “Display Advertising Challenge”. In: (2014). https: / /www.kaggle.

com/c/criteo-display-ad-challenge. Accessed 11-19-2018.

[111] Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand. “Self-adaptive and

Self-configured CPU Resource Provisioning for Virtualized Servers Using Kalman Fil-

ters”. In: Proceedings of the 6th International Conference on Autonomic Computing. ICAC

’09. ACM, 2009, pp. 117–126.

[112] Ken Kansky, Tom Silver, David A. Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla,

Xinghua Lou, Nimrod Dorfman, Szymon Sidor, D. Scott Phoenix, and Dileep George.

“Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics”.

In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017,

Sydney, NSW, Australia, 6-11 August 2017. 2017, pp. 1809–1818.

[113] Enver Kayaaslan, B. Barla Cambazoglu, and Cevdet Aykanat. “Document replication strate-

gies for geographically distributed web search engines”. In: 49.1 (2013), pp. 51–66. ISSN:

0306-4573.

[114] Michael Kearns. “Efficient Noise-tolerant Learning from Statistical Queries”. In: J. ACM

45.6 (Nov. 1998).

[115] Cinar Kilcioglu, Justin M. Rao, Aadharsh Kannan, and R. Preston McAfee. “Usage Pat-

terns and the Economics of the Public Cloud”. In: Proceedings of the Twenty-Sixth Inter-

national World Wide Web Conference. 2017.

http://g8fip1kplyr33r3krz5b97d1.wpengine.netdna-cdn.com/wp-content/uploads/2015/10/schrems-judgment.pdf
http://g8fip1kplyr33r3krz5b97d1.wpengine.netdna-cdn.com/wp-content/uploads/2015/10/schrems-judgment.pdf
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge

BIBLIOGRAPHY 137

[116] Jakub Konecný, Brendan McMahan, and Daniel Ramage. “Federated Optimization: Dis-

tributed Optimization Beyond the Datacenter”. In: CoRR (2015). URL: http://arxiv.org/abs/

1511.03575.

[117] Jakub Konecný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. “Federated

Optimization: Distributed Machine Learning for On-Device Intelligence”. In: CoRR (2016).

URL: http://arxiv.org/abs/1610.02527.

[118] Jakub Konecný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha

Suresh, and Dave Bacon. “Federated Learning: Strategies for Improving Communication

Efficiency”. In: CoRR abs/1610.05492 (2016). URL: http://arxiv.org/abs/1610.05492.

[119] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. “The Case

for Learned Index Structures”. In: Proceedings of the 2018 International Conference on

Management of Data. SIGMOD ’18. ACM, 2018, pp. 489–504.

[120] Andreas Krause and Daniel Golovin. “Submodular Function Maximization.” In: Tractabil-

ity. Ed. by Lucas Bordeaux, Youssef Hamadi, and Pushmeet Kohli. Cambridge University

Press, 2014, pp. 71–104.

[121] Andreas Krause, Ram Rajagopal, Anupam Gupta, and Carlos Guestrin. “Simultaneous

Placement and Scheduling of Sensors”. In: Proceedings of the 2009 International Confer-

ence on Information Processing in Sensor Networks. IPSN ’09. IEEE Computer Society,

2009, pp. 181–192.

[122] Poole David L. and Mackworth Alan K. Artificial Intelligence: Foundations of Computa-

tional Agents. Cambridge University Press, 2010.

[123] Avinash Lakshman and Prashant Malik. “Cassandra: A Decentralized Structured Storage

System”. In: SIGOPS Oper. Syst. Rev. 44 (2010), pp. 35–40.

[124] Leslie Lamport. “Paxos Made Simple”. In: ACM SIGACT News. Vol. 32. 4. 2001, pp. 51–

58.

http://arxiv.org/abs/1511.03575
http://arxiv.org/abs/1511.03575
http://arxiv.org/abs/1610.02527
http://arxiv.org/abs/1610.05492

BIBLIOGRAPHY 138

[125] John Langford and Tong Zhang. “The Epoch-Greedy Algorithm for Multi-armed Bandits

with Side Information”. In: Advances in Neural Information Processing Systems 20. Ed. by

J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis. Curran Associates, Inc., 2008, pp. 817–

824. URL: http://papers.nips.cc/paper/3178-the-epoch-greedy-algorithm-for-multi-armed-

bandits-with-side-information.pdf.

[126] Nikolaos Laoutaris et al. “Inter-datacenter bulk transfers with netstitcher”. In: SIGCOMM.

2011.

[127] Kim Larry. How Many Ads Does Google Serve In A Day? http://goo.gl/oIidXO. Accessed

11-13-2018. 2012.

[128] Arnon Lazerson, Izchak Sharfman, Daniel Keren, Assaf Schuster, Minos Garofalakis, and

Vasilis Samoladas. “Monitoring Distributed Streams Using Convex Decompositions”. In:

Proc. VLDB Endow. 8.5 (Jan. 2015), pp. 545–556. ISSN: 2150-8097. DOI: 10 . 14778 /

2735479.2735487. URL: http://dx.doi.org/10.14778/2735479.2735487.

[129] Mathias Lecuyer, Joshua Lockerman, Lamont Nelson, Siddhartha Sen, Amit Sharma, and

Aleksandrs Slivkins. “Harvesting Randomness to Optimize Distributed Systems”. In: Pro-

ceedings of the 16th ACM Workshop on Hot Topics in Networks. HotNets-XVI. ACM,

2017, pp. 178–184.

[130] George Lee et al. “The Unified Logging Infrastructure for Data Analytics at Twitter”. In:

PVLDB (2012).

[131] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. “A Contextual-bandit Ap-

proach to Personalized News Article Recommendation”. In: Proceedings of the 19th In-

ternational Conference on World Wide Web. WWW ’10. Raleigh, North Carolina, USA:

ACM, 2010, pp. 661–670.

[132] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josi-

fovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. “Scaling Distributed Machine

http://papers.nips.cc/paper/3178-the-epoch-greedy-algorithm-for-multi-armed-bandits-with-side-information.pdf
http://papers.nips.cc/paper/3178-the-epoch-greedy-algorithm-for-multi-armed-bandits-with-side-information.pdf
http://goo.gl/oIidXO
https://doi.org/10.14778/2735479.2735487
https://doi.org/10.14778/2735479.2735487
http://dx.doi.org/10.14778/2735479.2735487

BIBLIOGRAPHY 139

Learning with the Parameter Server”. In: 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 14). USENIX Association, 2014, pp. 583–598.

[133] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. “Communication Efficient Dis-

tributed Machine Learning with the Parameter Server”. In: Advances in Neural Information

Processing Systems 27. Curran Associates, Inc., 2014, pp. 19–27.

[134] Yuanlong Li, Yonggang Wen, Kyle Guan, and Dacheng Tao. “Transforming Cooling Opti-

mization for Green Data Center via Deep Reinforcement Learning”. In: CoRR (2017).

[135] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-

val Tassa, David Silver, and Daan Wierstra. “Continuous control with deep reinforcement

learning”. In: CoRR (2015).

[136] Chih-Jen Lin et al. “Trust Region Newton Method for Logistic Regression”. In: J. Mach.

Learn. Res. 9 (2008).

[137] Yucheng Low et al. “Distributed GraphLab: A Framework for Machine Learning and Data

Mining in the Cloud”. In: PVLDB (2012).

[138] Chenyang Lu, John Stankovic, Sang Son, and Gang Tao. “Feedback Control Real-Time

Scheduling: Framework, Modeling, and Algorithms”. In: Journal of Real-Time Systems,

Special Issue on Control-Theoretical Approaches to Real-Time Computing 23 (2002).

[139] Dhruv Mahajan et al. “A Functional Approximation Based Distributed Learning Algo-

rithm”. In: CoRR (2013).

[140] Dhruv Mahajan et al. “An efficient distributed learning algorithm based on effective local

functional approximations”. In: (). Arxiv http://arxiv.org/abs/1310.8418v4.

[141] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. “Resource

Management with Deep Reinforcement Learning”. In: Proceedings of the 15th ACM Work-

shop on Hot Topics in Networks. HotNets ’16. ACM, 2016, pp. 50–56.

http://arxiv.org/abs/1310.8418v4

BIBLIOGRAPHY 140

[142] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. “Neural Adaptive Video Stream-

ing with Pensieve”. In: Proceedings of the Conference of the ACM Special Interest Group

on Data Communication. SIGCOMM ’17. ACM, 2017, pp. 197–210.

[143] Benedict C. May, Nathan Korda, Anthony Lee, and David S. Leslie. “Optimistic Bayesian

Sampling in Contextual-bandit Problems”. In: J. Mach. Learn. Res. 13.1 (2012).

[144] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Ar-

cas. “Communication-Efficient Learning of Deep Networks from Decentralized Data”. In:

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,

AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA. 2017, pp. 1273–1282.

[145] Memory Hotplug. https://github.com/spotify/linux/blob/master/Documentation/memory-

hotplug.txt. Accessed: 11-19-2018.

[146] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman,

Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold

Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. “MLlib: Ma-

chine Learning in Apache Spark”. In: J. Mach. Learn. Res. 17.1 (2016), pp. 1235–1241.

[147] A. Mirhoseini, H. Pham, Q. Le, M. Norouzi, S. Bengio, B. Steiner, Y. Zhou, N. Kumar,

R. Larsen, and J. Dean. “Device Placement Optimization with Reinforcement Learning”.

In: 2017.

[148] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff Dean.

“A Hierarchical Model for Device Placement”. In: International Conference on Learning

Representations. 2018.

[149] Asit K. Mishra, Joseph L. Hellerstein, Walfredo Cirne, and Chita R. Das. “Towards Char-

acterizing Cloud Backend Workloads: Insights from Google Compute Clusters”. In: SIG-

METRICS Perform. Eval. Rev. 37.4 (2010), pp. 34–41.

[150] Thomas Mitchell. Machine Learning. 1st ed. McGraw-Hill, 1997.

https://github.com/spotify/linux/blob/master/Documentation/memory-hotplug.txt
https://github.com/spotify/linux/blob/master/Documentation/memory-hotplug.txt

BIBLIOGRAPHY 141

[151] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lil-

licrap, Tim Harley, David Silver, and Koray Kavukcuoglu. “Asynchronous Methods for

Deep Reinforcement Learning”. In: Proceedings of The 33rd International Conference on

Machine Learning. Vol. 48. Proceedings of Machine Learning Research. PMLR, 20–22

Jun 2016, pp. 1928–1937.

[152] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, and Martin Riedmiller. “Playing Atari With Deep Reinforcement Learn-

ing”. In: NIPS Deep Learning Workshop. 2013.

[153] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc

G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski,

Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan

Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. “Human-level Control through

Deep Reinforcement Learning”. In: Nature 518.7540 (2015), pp. 529–533.

[154] L. Mönch, J. Zimmermann, and P. Otto. “Machine Learning Techniques for Scheduling

Jobs with Incompatible Families and Unequal Ready Times on Parallel Batch Machines”.

In: Eng. Appl. Artif. Intell. 19.3 (2006), pp. 235–245.

[155] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[156] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. “Neural Net-

work Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-

Tuning”. In: CoRR abs/1708.02596 (2017).

[157] Shravan Narayanamurthy et al. “Towards Resource-Elastic Machine Learning”. In: Work-

shop on Big Learning, NIPS. 2013.

[158] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and Ricardo Bian-

chini. “DeepDive: Transparently Identifying and Managing Performance Interference in

Virtualized Environments”. In: Proceedings of the 2013 USENIX Conference on Annual

Technical Conference. San Jose, CA: USENIX Association, 2013, pp. 219–230.

BIBLIOGRAPHY 142

[159] Dirk Ormoneit and Saunak Sen. “Kernel-Based Reinforcement Learning”. In: Machine

Learning. 1999, pp. 161–178.

[160] Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Sing-

hal, Arif Merchant, and Kenneth Salem. “Adaptive Control of Virtualized Resources in

Utility Computing Environments”. In: Proceedings of the 2Nd ACM SIGOPS/EuroSys Eu-

ropean Conference on Computer Systems 2007. EuroSys ’07. ACM, 2007, pp. 289–302.

[161] Sinno Jialin Pan and Qiang Yang. “A Survey on Transfer Learning”. In: IEEE Trans. on

Knowl. and Data Eng. 22.10 (Oct. 2010), pp. 1345–1359.

[162] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay. “Scikit-learn: Machine Learning in Python”. In: Journal of

Machine Learning Research 12 (2011), pp. 2825–2830.

[163] Diego Peteiro-Barral and Bertha Guijarro-Berdiñas. “A survey of methods for distributed

machine learning”. In: Progress in AI (2013), pp. 1–11.

[164] Barry Porter, Matthew Grieves, Roberto Rodrigues Filho, and David Leslie. “REX: A De-

velopment Platform and Online Learning Approach for Runtime Emergent Software Sys-

tems”. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and

Implementation. OSDI’16. Savannah, GA, USA: USENIX Association, 2016, pp. 333–

348.

[165] Paolo Priore, David De La Fuente, Alberto Gomez, and Javier Puente. “A Review of Ma-

chine Learning in Dynamic Scheduling of Flexible Manufacturing Systems”. In: Artif. In-

tell. Eng. Des. Anal. Manuf. 15.3 (2001), pp. 251–263.

[166] Paolo Priore, David de la Fuente, Javier Puente, and José Parreño. “A Comparison of

Machine-learning Algorithms for Dynamic Scheduling of Flexible Manufacturing Sys-

tems”. In: Eng. Appl. Artif. Intell. 19.3 (2006), pp. 247–255.

[167] Qifan Pu et al. “Low Latency, Geo-distributed Data Analytics”. In: SIGCOMM. 2015.

BIBLIOGRAPHY 143

[168] Larry D. Pyeatt and Adele E. Howe. Decision Tree Function Approximation in Reinforce-

ment Learning. Tech. rep. Proceedings of the Third International Symposium on Adaptive

Systems: Evolutionary Computation and Probabilistic Graphical Models, 1998.

[169] Ariel Rabkin et al. “Aggregation and Degradation in JetStream: Streaming Analytics in the

Wide Area”. In: NSDI. 2014.

[170] Bogdan Răducanu, Peter Boncz, and Marcin Zukowski. “Micro Adaptivity in Vectorwise”.

In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of

Data. SIGMOD ’13. ACM, 2013, pp. 1231–1242.

[171] Jia Rao, Xiangping Bu, Cheng-Zhong Xu, Leyi Wang, and George Yin. “VCONF: A Re-

inforcement Learning Approach to Virtual Machines Auto-configuration”. In: Proceedings

of the 6th International Conference on Autonomic Computing. ICAC ’09. ACM, 2009,

pp. 137–146.

[172] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael A.

Kozuch. “Heterogeneity and Dynamicity of Clouds at Scale: Google Trace Analysis”. In:

Proceedings of the Third ACM Symposium on Cloud Computing. SoCC ’12. San Jose, Cal-

ifornia: ACM, 2012, 7:1–7:13.

[173] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google cluster-usage traces: format

+ schema. Technical Report. Google Inc., Nov. 2011.

[174] RightScale. State of the Cloud Report. https://www.rightscale.com/lp/state-of-the-cloud.

2018.

[175] Ohad Rodeh and Avi Teperman. “zFS - A Scalable Distributed File System Using Object

Disks”. In: IEEE Symposium on Mass Storage Systems. IEEE Computer Society, 2003,

pp. 207–218.

[176] Martin Rost and Kirsten Bock. “Privacy by design and the new protection goals”. In: DuD,

January (2011).

https://www.rightscale.com/lp/state-of-the-cloud

BIBLIOGRAPHY 144

[177] Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya Spivak, Michael Krebs,

Miche Baker-Harvey, and Tyler Sanderson. “VM Live Migration At Scale”. In: Proceed-

ings of the 14th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments. VEE ’18. ACM, 2018.

[178] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson

Education, 2003.

[179] S. Ratna Sandeep, M. Swapna, Thirumale Niranjan, Sai Susarla, and Siddhartha Nandi.

“CLUEBOX: A Performance Log Analyzer for Automated Troubleshooting”. In: Proceed-

ings of the First USENIX Conference on Analysis of System Logs. WASL’08. USENIX

Association, 2008.

[180] Robert R. Schaller. “Moore’s Law: Past, Present, and Future”. In: IEEE Spectr. 34.6 (1997),

pp. 52–59.

[181] Frank Schmuck and Roger Haskin. “GPFS: A Shared-Disk File System for Large Com-

puting Clusters”. In: Proceedings of the 1st USENIX Conference on File and Storage Tech-

nologies. FAST ’02. Monterey, CA: USENIX Association, 2002.

[182] Malte Schwarzkopf et al. “Omega: flexible, scalable schedulers for large compute clusters”.

In: EuroSys. 2013.

[183] Burr Settles. Active Learning Literature Survey. Computer Sciences Technical Report. Uni-

versity of Wisconsin–Madison, 2009.

[184] Sreekanth Setty. VMware vSphere 5.1 vMotion Architecture, Performance and Best Prac-

tices. 2012.

[185] Jonathan R Shewchuk. An Introduction to the Conjugate Gradient Method Without the

Agonizing Pain. Tech. rep. 1994.

[186] Piyush Shivam, Shivnath Babu, and Jeff Chase. “Active and Accelerated Learning of Cost

Models for Optimizing Scientific Applications”. In: Proceedings of the 32Nd International

Conference on Very Large Data Bases. VLDB ’06. VLDB Endowment, 2006, pp. 535–546.

BIBLIOGRAPHY 145

[187] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. “The Hadoop

Distributed File System”. In: Proceedings of the 2010 IEEE 26th Symposium on Mass

Storage Systems and Technologies (MSST). MSST ’10. IEEE Computer Society, 2010,

pp. 1–10.

[188] Tom Simonite. Moore’s Law Is Dead. Now What? https://www.technologyreview.com/s/

601441/moores-law-is-dead-nowwhat/. Accessed 11-9-2018. 2016.

[189] Virginia Smith. “System-Aware Optimization for Machine Learning at Scale”. PhD thesis.

EECS Department, University of California, Berkeley, 2017. URL: http : / / www2 . eecs .

berkeley.edu/Pubs/TechRpts/2017/EECS-2017-140.html.

[190] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. “Federated

Multi-Task Learning”. In: Advances in Neural Information Processing Systems 30. Ed.

by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.

Garnett. 2017, pp. 4424–4434.

[191] Virginia Smith, Simone Forte, Chenxin Ma, Martin Takáč, Michael I. Jordan, and Martin

Jaggi. “CoCoA: A General Framework for Communication-Efficient Distributed Optimiza-

tion”. In: Journal of Machine Learning Research 18.230 (2018), pp. 1–49.

[192] Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga, Kenneth Salem, P. Kokosielis,

and Sunil Kamath. “Automatic Virtual Machine Configuration for Database Workloads”.

In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of

Data. SIGMOD ’08. ACM, 2008, pp. 953–966.

[193] C. Spearman. “The Proof and Measurement of Association between Two Things”. In: The

American Journal of Psychology 15.1 (1904), pp. 72–101. ISSN: 00029556. URL: http :

//www.jstor.org/stable/1412159.

[194] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias W. Seeger. “Gaussian Pro-

cess Optimization in the Bandit Setting: No Regret and Experimental Design”. In: ICML.

2010, pp. 1015–1022.

https: //www.technologyreview.com/s/601441/moores-law-is-dead-nowwhat/
https: //www.technologyreview.com/s/601441/moores-law-is-dead-nowwhat/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-140.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-140.html
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159

BIBLIOGRAPHY 146

[195] Christopher Stewart, Terence Kelly, Alex Zhang, and Kai Shen. “A Dollar from 15 Cents:

Cross-platform Management for Internet Services”. In: USENIX 2008 Annual Technical

Conference. ATC’08. USENIX Association, 2008, pp. 199–212.

[196] Sun. Lustre File System: High-Performance Storage Architecture and Scalable Cluster File

System. 2007.

[197] Ananda Theertha Suresh, Felix X. Yu, H. Brendan McMahan, and Sanjiv Kumar. “Dis-

tributed Mean Estimation with Limited Communication”. In: CoRR abs/1611.00429 (2016).

[198] Richard S. Sutton. “Learning to Predict by the Methods of Temporal Differences”. In:

MACHINE LEARNING. Kluwer Academic Publishers, 1988, pp. 9–44.

[199] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT

Press, 1998.

[200] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. “Policy Gradi-

ent Methods for Reinforcement Learning with Function Approximation”. In: Proceedings

of the 12th International Conference on Neural Information Processing Systems. NIPS’99.

Denver, CO: MIT Press, 1999, pp. 1057–1063.

[201] Richard Stuart Sutton. “Temporal Credit Assignment in Reinforcement Learning”. PhD

thesis. 1984.

[202] B. C. Tak, C. Tang, H. Huang, and L. Wang. “PseudoApp: Performance prediction for ap-

plication migration to cloud”. In: 2013 IFIP/IEEE International Symposium on Integrated

Network Management (IM 2013). 2013, pp. 303–310.

[203] Ambuj Tewari and Susan A. Murphy. From Ads to Interventions: Contextual Bandits in

Mobile Health. 2017.

[204] The Nutanix Bible. http://nutanixbible.com/. Accessed: 11-28-2018.

[205] The Upper Confidence Bound Algorithm. http://banditalgs.com/2016/09/18/the-upper-

confidence-bound-algorithm/. Accessed: 09-15-2018.

http://nutanixbible.com/
http://banditalgs.com/2016/09/18/the-upper-confidence-bound-algorithm/
http://banditalgs.com/2016/09/18/the-upper-confidence-bound-algorithm/

BIBLIOGRAPHY 147

[206] Ashish Thusoo et al. “Data Warehousing and Analytics Infrastructure at Facebook”. In:

SIGMOD. 2010.

[207] John N. Tsitsiklis and Benjamin Van Roy. An Analysis of Temporal-Difference Learning

with Function Approximation. Tech. rep. IEEE Transactions on Automatic Control, 1997.

[208] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. “Resource Overbooking and

Application Profiling in Shared Hosting Platforms”. In: SIGOPS Oper. Syst. Rev. 36 (2002),

pp. 239–254.

[209] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. “Automatic Database

Management System Tuning Through Large-scale Machine Learning”. In: Proceedings of

the 2017 ACM International Conference on Management of Data. SIGMOD ’17. ACM,

2017, pp. 1009–1024.

[210] Nedeljko Vasić, Dejan Novaković, Svetozar Miučin, Dejan Kostić, and Ricardo Bianchini.

“DejaVu: Accelerating Resource Allocation in Virtualized Environments”. In: Proceedings

of the Seventeenth International Conference on Architectural Support for Programming

Languages and Operating Systems. ASPLOS XVII. London, England, UK: ACM, 2012,

pp. 423–436.

[211] Vinod Kumar Vavilapalli et al. “Apache Hadoop YARN: Yet Another Resource Negotia-

tor”. In: SOCC. 2013.

[212] Vdbench. https : / / www. oracle . com / technetwork / server - storage / vdbench - downloads -

1901681.html. Accessed: 11-19-2018.

[213] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht, and Ion Sto-

ica. “Ernest: Efficient Performance Prediction for Large-Scale Advanced Analytics”. In:

13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16).

USENIX Association, 2016, pp. 363–378.

[214] VMware. Performance Best Practices for VMware vSphere 5.5. 2014.

[215] VMware. Performance Best Practices for VMware vSphere 6.0. 2015.

https://www.oracle.com/technetwork/server-storage/vdbench-downloads-1901681.html
https://www.oracle.com/technetwork/server-storage/vdbench-downloads-1901681.html

BIBLIOGRAPHY 148

[216] VMware. Understanding Memory Resource Management in VMware ESX Server. 2011.

[217] Ashish Vulimiri et al. “Global Analytics in the Face of Bandwidth and Regulatory Con-

straints”. In: NSDI. 2015.

[218] Ashish Vulimiri. “Latency-Bandwidth Tradeoff in Internet Applications”. PhD thesis. 2015.

[219] Ashish Vulimiri et al. “WANalytics: Analytics for a Geo-Distributed Data-Intensive World”.

In: CIDR (2015).

[220] Christopher J. C. H. Watkins and Peter Dayan. “Technical Note: Q-Learning”. In: Mach.

Learn. 8.3-4 (1992), pp. 279–292.

[221] Markus Weimer et al. “REEF: Retainable Evaluator Execution Framework”. In: SIGMOD.

2015.

[222] K.Q. Weinberger et al. “Feature hashing for large scale multitask learning”. In: ICML.

2009.

[223] Shimon Whiteson and Peter Stone. “Adaptive Job Routing and Scheduling”. In: Eng. Appl.

Artif. Intell. 17.7 (Oct. 2004), pp. 855–869.

[224] John Wilkes. More Google Cluster Data. http://googleresearch.blogspot.com/2011/11/

more-google-cluster-data.html. Accessed 11-19-2018. 2011.

[225] Eric P. Xing, Qirong Ho, Wei Dai, Jin-Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng,

Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. “Petuum: A New Platform for Dis-

tributed Machine Learning on Big Data”. In: Proceedings of the 21th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining. KDD ’15. ACM, 2015,

pp. 1335–1344.

[226] Neeraja Yadwadkar. Machine Learning for Automatic Resource Management in the Dat-

acenter and the Cloud. Tech. rep. EECS Department, University of California, Berkeley,

2018.

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

BIBLIOGRAPHY 149

[227] Neeraja J. Yadwadkar, Ganesh Ananthanarayanan, and Randy Katz. “Wrangler: Predictable

and Faster Jobs Using Fewer Resources”. In: Proceedings of the ACM Symposium on Cloud

Computing. SOCC ’14. Seattle, WA, USA: ACM, 2014, 26:1–26:14.

[228] Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton Smith, and Randy

H. Katz. “Selecting the Best VM Across Multiple Public Clouds: A Data-driven Perfor-

mance Modeling Approach”. In: Proceedings of the 2017 Symposium on Cloud Computing.

SoCC ’17. ACM, 2017.

[229] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. “Bubble-flux: Precise Online

QoS Management for Increased Utilization in Warehouse Scale Computers”. In: Proceed-

ings of the 40th Annual International Symposium on Computer Architecture. ISCA ’13.

Tel-Aviv, Israel: ACM, 2013, pp. 607–618.

[230] Yuehwern Yih. “Learning Real-Time Scheduling Rules from Optimal Policy of Semi-

Markov Decision Processes”. In: International Journal of Computer Integrated Manufac-

turing (1992).

[231] Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-

memory Cluster Computing”. In: NSDI. 2012.

[232] Caoxie Zhang et al. “Efficient Distributed Linear Classification Algorithms via the Alter-

nating Direction Method of Multipliers”. In: AISTATS. 2012.

[233] Yuchen Zhang, Martin J Wainwright, and John C Duchi. “Communication-Efficient Algo-

rithms for Statistical Optimization”. In: Advances in Neural Information Processing Sys-

tems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger. Curran Asso-

ciates, Inc., 2012, pp. 1502–1510.

[234] Wei Zheng, Ricardo Bianchini, G. John Janakiraman, Jose Renato Santos, and Yoshio

Turner. “JustRunIt: Experiment-based Management of Virtualized Data Centers”. In: Pro-

ceedings of the 2009 Conference on USENIX Annual Technical Conference. USENIX’09.

USENIX Association, 2009, pp. 18–18.

BIBLIOGRAPHY 150

[235] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C. Hyser, D.

Gmach, R. Gardner, T. Christian, and L. Cherkasova. “1000 Islands: Integrated Capacity

and Workload Management for the Next Generation Data Center”. In: 2008 International

Conference on Autonomic Computing. 2008, pp. 172–181.

[236] Xiaoyun Zhu, Donald Young, Brian J. Watson, Zhikui Wang, Jerry Rolia, Sharad Singhal,

Bret Mckee, Chris Hyser, Daniel Gmach, Robert Gardner, Tom Christian, and Ludmila

Cherkasova. “1000 Islands: An Integrated Approach to Resource Management for Virtual-

ized Data Centers”. In: Cluster Computing 12.1 (2009), pp. 45–57.

[237] Marcin Zukowski and Peter A. Boncz. “Vectorwise: Beyond Column Stores”. In: IEEE

Data Eng. Bull. 35.1 (2012), pp. 21–27.

	List of Figures
	List of Tables
	Introduction
	The Machine Learning Revolution
	Machine Learning for Distributed Systems
	Machine Learning Modeling for Distributed Systems
	The Roles of Machine Learning in Distributed Systems
	The Challenges of Machine Learning for Distributed Systems
	Contributions
	ML-based Policies: Curator
	ML-based Mechanisms: AdaRes
	ML-System Co-Design: Pulpo

	Organization

	Background and Related Work
	Supervised Learning-based Techniques
	Background
	Related Work

	Bandit-based Techniques
	Background
	Related Work

	Reinforcement Learning-based Techniques
	Background
	Related Work

	Curator
	Distributed Storage for Enterprise Clusters
	Clusters Architecture
	Storage System and Associated Data Structures

	System Design
	Goals
	Components
	Management Tasks
	Scheduling Policies
	Measurements
	Reinforcement Learning-based Approach

	Evaluation
	Setup
	Results

	Related Work
	Summary

	AdaRes
	Resource Utilization Measurements of Enterprise Clusters
	Measurement Methodology
	Private Cluster Configurations
	Problem Characterization
	Opportunities and Challenges for Adaptive Resource Allocation

	System Design
	Goals
	Components
	Bandit-based Approach
	Controller

	Evaluation
	Setup
	Results

	Related Work
	Discussion and Future Work
	Summary

	Pulpo
	Problem Formulation
	Data distribution
	Learning Task

	System Design
	Goals
	Components
	Optimization-based Approach

	Evaluation
	Setup
	Results

	Related Work
	Discussion and Future Work
	Summary

	Conclusions
	Bibliography

