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We use two classifiers in cascade. 
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M E T H O D

• We need to predict whether a document contains novel 
information for an entity 

• If we can “summarize” the contents seen for an entity 

• We can compare the document to the entity’s summary 

• If similar, we have probably seen the information 

• If dissimilar, it is novel -> predict VITAL 

• How can we accurately and efficiently “summarize” all the 
documents that we have seen for an entity?



sparsity

“Barack was elected president today”

“Obama has won the election”

B A G  O F  W O R D S

size of representation grows over time

word counts are simple to implement, 
often work quite well



W O R D  E M B E D D I N G S

• Vector representations of words 

• fixed length array of real values

vfrance = (0.002, 0.2, 0.4…..) 

vparis = (0.005, 0.18, 0.43…..)
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d = ... So, it comes as good news that state officials 
are making significant progress in determining 
which chemicals pollute Puget Sound and in 
identifying where they come from. A report last 
week from the Department of Ecology casts a wide 
net over culprits. Most toxic chemicals are used in 
some way by all of us, said Ecology Director Ted 
Sturdevant. They are in our homes and gardens... 

e = Ted Sturdevant
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Most toxic chemicals are used in some way by all of

e = Ted Sturdevant

us, said Ecology Director Ted Sturdevant

NNP NNP

NNS VBP VBN

VBD

NN

NNP NNP

JJ IN DT IN DT IN

PRP

RBS

D O C U M E N T  E M B E D D I N G



                   chemicals are used               way

e = Ted Sturdevant

     said Ecology Director Ted Sturdevant

NNP NNP

NNS VBP VBN

VBD

NN

NNP NNP

D O C U M E N T  E M B E D D I N G



D O C U M E N T  E M B E D D I N G

e = Ted Sturdevant

W=[chemicals, are, used, way, said, ecology, 
director, ted_sturdevant]

vchemicals = f (chemicals)

vare = f (are)

vused = f (used)

vway = f (way)

vsaid = f (said)

vecology = f (ecology)

vdirector = f (director)

vd =  1/|W| ( vchemicals + vare + vused + vway + vsaid + vecology + vdirector )



M E T H O D

• So far we have a representation for documents. 

• To summarize what we have seen of an entity

ve =
1

|De|
X

d2De

vd

• Compare embedding of doc to entity’s 

• If close -> predict NON-VITAL
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M U LT I P L E  E M B E D D I N G S  F O R  E N T I T I E S

• Use multiple embeddings to capture the different 
clusters of an entity. 

• We propose an algorithm that: 

• assigns each document to a single cluster, 

• adaptively grows the number of clusters 

• is efficient
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M E T H O D

• Take embedding of document 

• Compare to all cluster vectors of an entity 

• If close to ANY -> we have seen similar document 

• If far from ALL -> document contains novel info



M E T H O D

• Unfortunately this is not accurate

“Obama wins the presidential election” (2008)

“Obama wins his second presidential election” (2012)



M E T H O D

• Propose a staleness measure 

• low staleness -> novel, freshness, vital 

• high staleness -> old, stale, non-vital
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S TA L E N E S S

• Take embedding of document 

• Compare to all cluster vectors of an entity 

• If far from ALL -> document contains novel info 

• If close to ANY and LOW staleness -> VITAL 

• If close to ANY and HIGH staleness -> NON-VITAL
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F E AT U R E S

• Baseline 

• Document Level 

• log length and source of the document 

• Document-Entity Level 

• number and position of occurrences of entities in 
the document, etc.



O U R  F E AT U R E S

• Embedding 

• embedding of document 

• Clustering 

• min and average distances between embeddings of 
document and clusters 

• Temporal 

• staleness of the entity 

• staleness of the assigned cluster
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Embedding-Clustering 0 . 4 3 9 0 . 3 7 2 0 . 4 0 3
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O F F I C I A L  V I TA L  R E S U LT S

P = 2nd 

F1 = 8th 



U N O F F I C I A L  V I TA L  R E S U LT S

F1 = 2nd 
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V I S U A L I Z AT I O N

• Browser-based visualization prototype with 
interactive widgets 

• Mainly for debugging purposes
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C O N C L U S I O N

• Semi-supervised model for document filtering tasks 

• Low dimensional vector based semantics is useful for VF 

• Non-parametric clustering  can capture multiple aspects of entities 

• Simple decay based temporal dynamics indicate novelty 

• Official results show we are 2nd in Precision and 3rd in SU 

• Follow up analysis suggests we are 2nd in F1 as well
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