Characterizing Private Clouds: A Large-Scale Empirical Analysis of Enterprise Clusters

Ignacio Cano, Srinivas Aiyar, Arvind Krishnamurthy University of Washington – Nutanix Inc.

ACM Symposium on Cloud Computing October 2016

Private Clouds

Private Clouds

- Cloud computing that delivers service to a single organization, as opposed to public clouds, which service many.
- Direct control of infrastructure and data.
- Carry management and maintenance costs.

Motivation

- Increasing trend in the use of private clouds within companies.
- Private clouds deployments require careful consideration of what will happen in the future:
 - Capacity
 - Failures

Motivation

• Research Questions:

- How do additional replicas impact data durability?
- What causes companies to expand their clusters?

Related Work

Setting \ Study	Hardware Failures	Storage	Compute
		Metadata in Windows PCs	Dick/CDU Usage and Load
Desktops		d prior work	[Bolosky et al., SIGMETRICS'00]
Public Clouds	• нw rel	vate Clouds!	 Workloads characterization [Mishra et al., SIGMETRICS'10] Scheduling on
Public Clouds	[Vishwanath et al., SoCC'11]	[Liu et al., IEEE/ACM CCGrid'13]	Heterogeneous Clusters [Reiss et al., SoCC'12]

In this talk

- Large-Scale Measurement Study of Private Clouds
 - Lower hardware failure rates
 - Nodes overprovisioned
 - Stable storage and CPU usage
- Modeling based on the Measurements
 - Each extra replica provides substantial durability improvements
 - Storage needs drive growth more than compute

Outline

- Large-Scale Measurement Study of Private Clouds
 - Context
 - Cluster Profiles
 - Failure Analysis
 - Workload Characteristics
- Modeling based on the Measurements
 - Durability
 - Cluster Growth

Outline

- Large-Scale Measurement Study of Private Clouds
 - Context
 - Cluster Profiles
 - Failure Analysis
 - Workload Characteristics
- Modeling based on the Measurements
 - Durability
 - Cluster Growth

Operations interposed at the hypervisor level and redirected to CVMs

Nutanix Clusters

Random replication VMs migration

Outline

- Large-Scale Measurement Study of Private Clouds
 - Context
 - Cluster Profiles
 - Failure Analysis
 - Workload Characteristics
- Modeling based on the Measurements
 - Durability
 - Cluster Growth

Summary Statistics	Value
# of Clusters	2168

Summary Statistics	Value	
# of Clusters	2168	
# of Nodes	13394	
6.18 Nodes/Cluster		

Summary Statistics	Value
# of Clusters	2168
# of Nodes	13394
Cluster Sizes	3 - 40

Summary Statistics	Value
# of Clusters	2168
# of Nodes	13394
Cluster Sizes	3 - 40
# of Disks	~ 70K

Node Configurations

Configuration	Sto	age Compu		Compute	
Configuration	SSD (TB)	HDD (TB)	Cores	Clock Rate (GHz)
Config-1	1.6	8	24	2.5	384
Config-2	0.8	4	12	2.4	128
Config-3	0.8	30	16	2.4	256
Storage-heavy					
		N	Mostly		ompute-heavy
		homogeneous			
		withir	n a clu	ister	16

Workload	Example Applications	Configuration
Virtual Desktop Infrastructure	Citrix XenDesktop VMware Horizon/View	Config-1

Workload	Example Applications	Configuration
Virtual Desktop Infrastructure	Citrix XenDesktop VMware Horizon/View	Config-1
Server	SQL Server Exchange Mail Server	Config-2 Config-3

Workload	Example Applications	Configuration
Virtual Desktop Infrastructure	Citrix XenDesktop VMware Horizon/View	Config-1
Server	SQL Server Exchange Mail Server	Config-2 Config-3
Big Data	Splunk Hadoop	Config-3

Workload	Example Applications	Configuration
Virtual Desktop Infrastructure	Citrix XenDesktop VMware Horizon/View	Config-1
Server	SQL Server Exchange Mail Server	Config-2 Config-3
Big Data	Splunk Hadoop	Config-3
Others	IT Infrastructure Custom applications	Mix

Distribution of VMs per Node

Outline

- Large-Scale Measurement Study of Private Clouds
 - Context
 - Cluster Profiles
 - Failure Analysis
 - Workload Characteristics
- Modeling based on the Measurements
 - Durability
 - Cluster Growth

Failures

 We only consider failures that require manual intervention, i.e., human operators annotate the cause of the problem.

OUBLE

REASON

Hardware Failures

24

Annual Return Rate

Annual Return Rate

Outline

- Large-Scale Measurement Study of Private Clouds
 - Context
 - Cluster Profiles
 - Failure Analysis
 - Workload Characteristics
- Modeling based on the Measurements
 - Durability
 - Cluster Growth

Workload Characteristics

- Usage over time seems to be stable/predictable: 80% of the clusters use
 - Storage: mean <= 50%, std <= 8%</p>
 - **CPU:** mean <= 20%, std <= 5%

- **SSDs** can generally **maintain** the **working set**
 - 80% of nodes use <= 500 GB for the working set</p>

Outline

- Large-Scale Measurement Study of Private Clouds
 - Context
 - Cluster Profiles
 - Failure Analysis
 - Workload Characteristics
- Modeling based on the Measurements
 - Durability
 - Cluster Growth

- Estimate the **probability of data loss.**
- Assumptions:

Remaining

live nodes

- replication factor of 2
- random replication (replicate to a random node)
- The time required to create a new replica when a node goes down:
 Data to be

 $\Delta t = \frac{1}{(n-1)v}$

replicated

Data

transfer rate

- $p(\Delta t) = probability of node failure in \Delta t time.$
- We decompose the overall period over which we want to provide the durability guarantee into a sequence of intervals, each of length Δt.
- Q = data loss event where two failures occur within Δt time, i.e. data could not be replicated.

 Then the probability that there is no data loss in an interval ∆t:

- On a yearly-basis, we consider all Δt intervals in a year.
- Probability of **no data loss** within a **year** is:

$$P_{durability} = P(\neg Q, \Delta t)^{N(\Delta t)}$$

of intervals of Δt time in a year

Durability in Private Clouds

Data Loss (Probability)

Outline

- Large-Scale Measurement Study of Private Clouds
 - Context
 - Cluster Profiles
 - Failure Analysis
 - Workload Characteristics
- Modeling based on the Measurements
 - Durability
 - Cluster Growth

Cluster Growth Analysis

- **Customers** periodically **add nodes** to their existing clusters.
- What **drives** such **growth**?
- We resort to machine learning
 - **Binary classification** problem
 - Logistic Regression with L1 regularization

Cluster Growth Analysis

- Use **200 clusters** than grew at least once in a period of 8 months.
- 15K examples (70% train, 10% val, 20% test).
- Train with **different combination of features** to understand which are important.

Features

Cluster Features F ^c	Description	
n(nodes)	discretized # of nodes	
n(vms)	# of vms per node	
Storage Features F ^s	Description	
r(ssd)	ssd usage to ssd capacity ratio	
r(hdd)	hdd usage to hdd capacity ratio	
r(store)	storage usage to total capacity ratio	
Performance Features F ^p	Description	
n(vcpus)	# of virtual cpus	
n(iops)	# of iops per node	

What drives cluster growth?

Storage more than compute!

Outline

- Large-Scale Measurement Study of Private Clouds
 - Context
 - Cluster Profiles
 - Failure Analysis
 - Workload Characteristics
- Modeling based on the Measurements
 - Durability
 - Cluster Growth

Conclusions

- Large-Scale Measurement Study of Private Clouds
 - Lower hardware failure rates
 - Nodes overprovisioned
 - Stable storage and CPU usage
- Modeling based on the Measurements
 - Each extra replica provides substantial durability improvements
 - Storage needs drive growth more than compute

Thanks!

