Optimizing Distributed Systems using Machine Learning

Ignacio (Nacho) Cano

Ph.D. Defense Paul G. Allen School of Computer Science & Engineering University of Washington

December 2018

## **Distributed Systems**

Multiple interconnected components
Cooperate with each other to perform certain task(s)
Components have well-defined interfaces
Interested in their efficiency and performance

# Example 1: Storage Tiering Services

Migrate data from SSDs to HDDs



### **Problems with Storage Tiering Services**

Rely on operator-defined thresholds for migrations
Disregard workload characteristics



### Example 2: Virtualization Software

Package applications on VMs

 Execute them together with other workloads on same hardware



### **Problems with Virtualization Software**

Rely on static user-defined allocations (vCPUs, memory)
Disregard workload temporal patterns



## Example 3: Data Processing Systems

• Support pipelines to join and analyze disperse datasets



### **Problems with Data Processing Systems**

# Transfer huge amounts of data Disregard that transferring data summaries may suffice



### Distributed Systems typically rely on ...

- Fixed configurations
- One-size-fits-all thresholds
- Hardcoded rules

Sub-optimal systems efficiency and performance

### What we actually want ...

- Fixed configurations
  One-size-fits-all thresholds
  Custom thresholds
- Hardcoded rules

Learn rules

Improve systems efficiency and performance

### **Distributed Systems need to ...**

Adapt to different runtime conditions
Be tuned on a case-by-case basis at running time
Leverage data and problem structure

### Machine Learning to the rescue!

### Optimizing Distributed Systems using Machine Learning

**1.** CURATOR: ML-based policy to schedule storage tasks

2. ADARES: ML-based mechanism to adjust VM resources

**3.** PULPO: ML-System co-design to train models from geodistributed datasets

# Outline

- Motivation
- Challenges
- CURATOR
- AdaRes
- Pulpo
- Conclusions

# Outline

- Motivation
- Challenges
- CURATOR
- AdaRes
- Pulpo
- Conclusions

### **ML Challenges for Distributed Systems**

- 1. Cold start
  - Speed up training
  - Minimize interactions with environment
- 2. Model setup
  - Collection of features
  - Quantify performance
- 3. Exploration and Interpretability
  - Maintain normal functioning
  - Insight to operators

# ML Challenge 1: Cold Start

- Leverage historical traces
  - Pre-train models to accelerate training and reduce sample complexity.
- Use transfer learning from simulations to real environments
  Expose agents to relevant situations in advance

# ML Challenge 2: Model Setup

### • Create efficient **sensing** mechanisms

- Cluster-level metrics
- Node-level metrics
- VM-level metrics

Propose intuitive reward functions
High performance (e.g., low latency)
High efficiency (e.g., high CPU usage)

### ML Challenge 3: Exploration and Interpretability

### Promote safe online exploration

- Do unsafe exploration offline using simulators
- Revise ML-based decisions with business constraints

Leverage models that provide uncertainty in predictions
Better understanding of the decision-making process

# Outline

- Motivation
- Challenges
- CURATOR
- AdaRes
- Pulpo
- Conclusions

# **Cluster Storage Systems**

### Significant functionality

- Automatic replication and recovery
- Seamless integration of SSDs and HDDs
- Snapshotting and reclamation of unnecessary data
- Much of functionality can be done in the background

# Scheduling of these tasks is key to overall cluster performance



Framework and systems support for building background tasks

### CHALLENGE

Heterogeneity across and within clusters over time

• Use **reinforcement learning** to schedule the background tasks



Framework and systems support for building background tasks

### CHALLENGE

Heterogeneity across and within clusters over time

Use reinforcement learning to schedule the background tasks

# **Tiering Task**

- Move cold data from a faster storage tier to a slower tier
- Maximize SSD effectiveness for both reads and writes in order to reduce latency
- Threshold-based policy to trigger the task



Many clusters waste 25% of fast storage

### Need smarter scheduling policies

## **Reinforcement Learning (RL)**



## **Reinforcement Learning for Tiering**

- State: cluster-level features
  - Utilization: CPU, memory, SSD
  - Performance: read / write IOPS
- Actions: run, not run
- Reward: -1 \* latency

• Pre-trained our agents with real traces from other clusters

### **Evaluation Results**



### **CURATOR SUMMARY**

Framework and systems support for building background tasks

• Used **reinforcement learning** to schedule the tasks

- Bootstrapped our agents with historical traces from real clusters
- Results on Tiering showed up to ~20% latency improvements

# Outline

- Motivation
- Challenges
- CURATOR
- AdaRes
- Pulpo
- Conclusions

## Large-Scale Measurement Study

1-month trace from Nutanix clusters

- 253k VMs
- 17k nodes
- 3.6k clusters

## **Measurement Findings**

Most VMs in enterprise clusters not sized appropriately
Many clusters with both under and overprovisioned VMs
Significant variation of utilization for VMs across time

Need a system that adaptively changes resources allocated to VMs in a cluster

### **A**da**R**es

Framework and systems support for adjusting VM resources on-the-fly, namely vCPUs and memory

### CHALLENGES

Adaptive and improve over time

- Use contextual bandits to perform the adaptations
- Extensible, flexible, and scalable framework
  - Decompose architecture into **decoupled** and **highly configurable** components

### **A**da**R**es

Framework and systems support for adjusting VM resources on-the-fly, namely vCPUs and memory

### CHALLENGES

### Adaptive and improve over time

- Use **contextual bandits** to perform the adaptations
- Extensible, flexible, and scalable framework
  - Decompose architecture into **decoupled** and **highly configurable** components

### **Contextual Bandits**



### **Contextual Bandits for VM Resource Management**

- Context: cluster, node, and VM-level features
  - Utilization: CPU / memory
  - Performance: latency, IOPS, swap rates, CPU ready times
- Arms/Actions: per resource type
  - Up / Down / Noop
- Reward: {0, 1} per resource type
  - 1: Move away from "bad" states, increase utilization
  - o: Lead to "bad" or "worse" states, decrease utilization

Pre-train our agents offline using simulators

# Challenges

- Adaptive and improve over time
- Extensible, flexible, and scalable framework

# Challenges

- Adaptive and improve over time
- Extensible, flexible, and scalable framework
### **ADARES Services**



## Methods

- Passive: no configuration changes
- Reactive: changes based on target thresholds using current resource utilization
- Proactive: changes based on target thresholds using predicted max resource utilization
- Bandits: adjusts resources using contextual bandits with model that provides uncertainty in predictions

# **Resource Balancing**

#### Start





Less under and overprovisioning

### Under and overprovisioning

## **Resource Utilization**

#### **Increases utilization**

### Keeps up with IOPS



### **ADARES Summary**

Framework and systems support for adjusting VM resources on-the-fly, namely vCPUs and memory

- Used **contextual bandits** to perform the VM adaptations
  - Leveraged transfer learning from simulations to real environment
  - Results showed allocation and utilization improvements over other baselines
- Decomposed architecture into decoupled and highly configurable components
  - Easily extensible and scalable, and agnostic to ML model

# Outline

- Motivation
- Challenges
- CURATOR
- AdaRes
- Pulpo
- Conclusions

### **Geo-Distributed Machine Learning (GDML)**

- Data generated and stored in data centers around the world
  - Minimize latency between serving infra and end-users
  - Respect regulatory constraints
- Machine learning apps require global view
  - Fraud Prevention
  - Recommender Systems

## **Previous Solutions: Centralized**

Copy all the data partitions into one data center
 Training takes places intra-data center (in-DC)

### **Problems with Centralized**

High cross-data center (X-DC) bandwidth consumption
Privacy and data sovereignty regulations

Need a system to efficiently train ML models from geo-distributed datasets

### PulPo

Framework and systems support for geo-distributed training

#### CHALLENGES

- Reduce communication between data centers
  - Trade-off in-DC computation and communication with X-DC communication
- Extensible, flexible, and scalable framework
  - Use/extend Apache Hadoop YARN and Apache REEF

### PulPo

Framework and systems support for geo-distributed training

#### CHALLENGES

- Reduce communication between data centers
  - Trade-off in-DC computation and communication with X-DC communication
- Extensible, flexible, and scalable framework
  - Use/extend Apache Hadoop YARN and Apache REEF

### **Communication-Efficient Algorithm**

#### FADL [Mahajan et al., JMLR '15]

- Initialize *global state*
- Send global state
- DCs compute a *local state*
- Send local state
- Aggregate local states
- Negligible DC computation
- Update *global state*



More in-DC cmp. and comm. Less X-DC communication

# Challenges

- Reduce communication between data centers
- Extensible, flexible, and scalable framework

# Challenges

- Reduce communication between data centers
- Extensible, flexible, and scalable framework

## **PulPo Architecture**

### Application Layer (DML/GDML)

- Multi-level communication trees across DCs
- Learning algorithms in terms of B/R primitives

### Apache REEF

- Generalized control plane
- Data aggregation, communication, etc.

Apache Hadoop YARN

- Federated version
- Single massive YARN cluster
- Network-aware resource requests

# **Evaluation Setup**

- Logistic Regression with L2 regularization
- Data randomly distributed
- Click-through rate datasets (CRITEO and KAGGLE)
- Simulation (2, 4, 8 data centers)
- Real Setup (West US and West Europe)

## Methods

### Centralized: trains in-DC

- **Bulk**: batch replication scheme (copy time included)
- Stream: streaming copy model (copy time not included)
- **Distributed**: trains X-DC w/o comm-efficient algorithm
- **Distributed-Fadl**: trains X-DC with comm-efficient algo

## X-DC Transfer (Simulation)

#### CRITEO 10M

#### CRITEO 50M – 2DC



Orders of magnitude reduction

**Better models sooner** 

# **Running Time (Real Azure Setup)**

#### KAGGLE 500K

#### KAGGLE 5M



Close to optimal in low dimensional models

Deteriorates with model size

### ΡυιΡο

Framework and systems support for geo-distributed training

Traded-off in-DC comp. and comm. with X-DC communication

- Reduced WAN bandwidth consumption while achieving same accuracy results
- Used/extended Apache Hadoop YARN and Apache REEF
  - Single job across data centers
  - Network-aware placement of tasks
  - Requires algorithm to be expressed in terms of B/R primitives

# Outline

- Motivation
- Challenges
- CURATOR
- AdaRes
- Pulpo
- Conclusions

## Conclusions

### We can use Machine Learning to optimize Distributed Systems

### ML-based Policy

- **CURATOR**, framework and systems support for building background maintenance tasks
- RL-based scheduling showed performance improvements over a threshold-based approach

### ML-based Mechanism

- ADARES, framework and systems support for adjusting VM resources on-the-fly
- Contextual bandits-based adjustments showed more efficient resource allocations compared to other baselines

### ML-System Co-Design

- PULPO, framework and systems support for efficiently training geo-distributed ML models
- **Co-designed ML-System** solution showed orders of magnitude savings in terms of X-DC bandwidth utilization compared to other approaches

### **Thanks!**



# **Special Thanks!**



## Conclusions

### We can use Machine Learning to optimize Distributed Systems

### ML-based Policy

- **CURATOR**, framework and systems support for building background maintenance tasks
- RL-based scheduling showed performance improvements over a threshold-based approach

### ML-based Mechanism

- ADARES, framework and systems support for adjusting VM resources on-the-fly
- Contextual bandits-based adjustments showed more efficient resource allocations compared to other baselines

### ML-System Co-Design

- PULPO, framework and systems support for efficiently training geo-distributed ML models
- **Co-designed ML-System** solution showed orders of magnitude savings in terms of X-DC bandwidth utilization compared to other approaches

# **Backup Slides**

## **CURATOR Backup**

Operations interposed at the hypervisor level and redirected to CVMs

## **Nutanix Clusters**

Data replication Disk balancing VM Migration



# **Distributed Key-Value Store**

- Metadata for the entire storage system stored in k-v store
- Foreground I/O and background tasks coordinate using the k-v store
- Key-value store supports replication and consistency using Paxos



## MapReduce Framework

- Globally distributed maps processed using MapReduce
- System-wide knowledge of metadata used to perform various self-managing tasks



## **Data Structures and Metadata Maps**

- Data stored in units called extents
- Extents are grouped together and stored as extent groups on physical devices



• Multiple levels of redirection simplifies data sharing across files and helps with minimizing map updates

# **Example:** Tiering

- Move cold data from fast (SSD) to slow storage (HDD, Cloud)
- Identify cold data using a MapReduce job
  - Modified Time (mtime): Extent Group Id map
  - Access Time (atime): Extent Group Id Access Map

# **Example: Tiering**

• egid 120

- mtime owned by Node A
- atime owned by Node D
- egid 120 == "cold" ?
  - Maps globally distributed
     → not a local decision
- Use MapReduce to perform a "join"



# **Example: Tiering**

- Map phase
  - Scan both metadata maps
  - Emit egid -> mtime or atime
  - Partition using egid
- Reduce phase
  - Reduce based on egid
    - Generate tuples (egid, mtime, atime)
  - Sort locally and identify the cold egroups



# **Tiering Modeling Constraints**

- Wide heterogeneity of clusters and workloads
- Variability of resource demands over time
- Don't know what would have happened had we made a different decision, need to try things out
- Decisions may impact performance over a long horizon
- Delayed feedback


## **Scheduling Decisions with RL**

run although cluster highly utilized and low latency



## **LEARNED** not to run in those cases

## **Related Work (non-exhaustive)**

- Ipek et al. [ISCA 'o8]: RL-based memory scheduler to decide which DRAM command to perform in the next cycle (precharge, activate, read, write)
- Eastep et al. [ICAC `10] SmartLocks: uses RL to decide which waiter process will get the lock next for the best long-term effect
- Prashanth et al. [IEEE TITS ` 11]: RL-based controller for scheduling traffic control signals
- Mao et al. [HotNets `16] DeepRM: RL-based scheduler of jobs in a cluster
- Chinchali et al. [AAAI `18] RL-based scheduler to determine the traffic rate for IoT data in mobile networks

## AdaRes Backup

### Why Contextual Bandits?

- VM workloads change frequently
- Incoming VMs don't have records at all
- Learning task should estimate the result of making a resource adjustment
- Don't know what would have happened had we done a different change, need to try things out
- Immediate feedback

### System Architecture



## **Transfer Learning: Simulation to Real**

### • Requirements

- Reasonable emulation of the dynamics of the cluster
- Simplistic analytical models to obtain  $\mathbf{x}_t$  and  $\mathbf{r}_t$
- Challenges
  - Large # of components and connections
  - Complex dependencies, irregular interactions
- Data-driven approach
  - Controlled experiments in real clusters where we perform VM configuration changes and record their impact
  - I/O benchmarks (rr, rw, rrw, sequential) to profile IOPS and latencies

## **Transfer Learning Results**

### Low memory context

### w/o transfer learning mem noop



### with transfer learning mem up



## Related Work (non-exhaustive)

- Auto-scaling systems (AWS, GCP)
  - Scale out/in based on target utilization metrics, i.e., thresholds
  - No vertical scaling but they do sizing recommendations
- Vasic et al. [ASPLOS '12] DejaVu: predictable workloads, clustering to identify workload categories
- Bu et al. [IEEE TPDS `12]: CoTuner: RL to change VM limits in the hypervisor
- Delimitrou et al. [ASPLOS `13] Paragon: online workload profiling and classification using collaborative filtering
- Venkataraman et al. [NSDI '16] Ernest: Predictable structure of jobs to predict runtime and assign right hardware configuration
- Yadwadkar et al. [SoCC `17] RF to identify best VM across cloud providers
- Cortez et al. [SOSP '17] Resource Central: assignment of VMs to servers

### **ADARES Extensions**

- More comprehensive evaluations (e.g., real workloads, sensitivity analyzes of thresholds)
- More measurement sensors (e.g., application-level metrics)
- Control other type of resources (e.g., storage, networking)
- Manage containers

•

## PULPO Backup

## **Distributed Machine Learning (DML)**

- Dataset partitioned among workers
- Training proceeds in comm. rounds
- Server node sends algorithm "state"
- Workers perform computations based on the received "state" and their shard of the dataset
- Workers send update back to server
- Server applies the updates to the "state" and process repeats



More computation Less communication FADL [Mahajan et al., JMLR '15] <sup>83</sup>

Choose  $w^0$ for r = 0, 1... do Compute  $g^r$  (X-DC communication) Exit if  $||g^r|| \leq \epsilon_g ||g^0||$ for p = 1, ..., P (in parallel) do Construct  $\hat{f}_p(w)$  $w_p \leftarrow \text{Optimize } \hat{f}_p(w) \text{ (in-DC communication)}$ end for  $d^r \leftarrow \frac{1}{P} \sum_p w_p - w^r$  (X-DC communication) Line Search to find t (negligible X-DC communication)  $w^{r+1} \leftarrow w^r + t d^r$ end for

### 1. Initialize w<sup>o</sup>

DC-1/Coordinator

### Initialize w°



### 1. Initialize w<sup>o</sup>



- 1. Initialize w<sup>o</sup>
- 2. DCs compute gradient in parallel

### DC-1/Coordinator

Compute Gradient

DC-2

Compute Gradient DC-3

Compute Gradient

- 1. Initialize w<sup>o</sup>
- 2. DCs compute gradient in parallel



- 1. Initialize wo
- 2. DCs compute gradient in parallel
- 3. Aggregate gradient

#### DC-1/Coordinator

Aggregate gradient



- 1. Initialize w<sup>o</sup>
- 2. DCs compute gradient in parallel
- 3. Aggregate gradient



- 1. Initialize w<sup>o</sup>
- 2. DCs compute gradient in parallel
- 3. Aggregate gradient
- 4. DCs local optimization in parallel



- 1. Initialize w<sup>o</sup>
- 2. DCs compute gradient in parallel
- 3. Aggregate gradient
- 4. DCs local optimization in parallel



- 1. Initialize w<sup>o</sup>
- 2. DCs compute gradient in parallel
- 3. Aggregate gradient
- 4. DCs local optimization in parallel
- 5. Aggregate descent direction



- 1. Initialize w<sup>o</sup>
- 2. DCs compute gradient in parallel
- 3. Aggregate gradient
- 4. DCs local optimization in parallel
- 5. Aggregate descent direction



- 1. Initialize w<sup>o</sup>
- 2. DCs compute gradient in parallel
- 3. Aggregate gradient
- 4. DCs local optimization in parallel
- 5. Aggregate descent direction
- 6. DCs do line search in parallel

# DC-1/Coordinator Line Search DC-3 Line Search Line Search

DC-2

- 1. Initialize w<sup>o</sup>
- 2. DCs compute gradient in parallel
- 3. Aggregate gradient
- 4. DCs local optimization in parallel
- 5. Aggregate descent direction
- 6. DCs do line search in parallel



- 1. Initialize w<sup>o</sup>
- 2. DCs compute gradient in parallel
- 3. Aggregate gradient
- 4. DCs local optimization in parallel
- 5. Aggregate descent direction
- 6. DCs do line search in parallel
- 7. Update model with best step size

#### DC-1/Coordinator

### Update model



- 1. Initialize w<sup>o</sup>
- 2. DCs compute gradient in parallel
- 3. Aggregate gradient
- 4. DCs local optimization in parallel
- 5. Aggregate descent direction
- 6. DCs do line search in parallel
- 7. Update model with best step size



### 8. Repeat



## **Related Work (non-exhaustive)**

### • Analytic workloads

- Vulimiri et al. [NSDI '15]: reduce WAN bandwidth
- Pu et al. [SIGCOMM `15] Iridium: optimize task and data placement to minimize query response time
- Streaming setting
  - Rabkin et al. [NSDI '14]: compute near the edge and only send "important" data
  - Lazerson et al. [VLDB '15]: distributed monitoring
- Information retrieval
  - Baeza-Yates et al. [CIKM '09]: reduce end-user latency in multi-site search engines

### • Machine learning

- Hsieh et al. [NSDI '17] Gaia: emphasis on reducing training time. Different consistency models to do asynchronous updates
- McMahan et al. [AISTATS `17]: federated learning using mobile devices