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Distributed Systems

* Multiple interconnected components

* Cooperate with each other to perform certain task(s)
* Components have well-defined interfaces

* Interested in their efficiency and performance



Example 1: Storage Tiering Services

* Migrate data from SSDs to HDDs
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Problems with Storage Tiering Services

* Rely on operator-defined thresholds for migrations
* Disregard workload characteristics
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Example 2: Virtualization Software

* Package applications on VMs

* Execute them together with other workloads on same
hardware
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Problems with Virtualization Software

*Rely on static user-defined allocations (vCPUs, memory)
* Disregard workload temporal patterns
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Example 3: Data Processing Systems

* Support pipelines to join and analyze disperse datasets

West-US East-US
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Problems with Data Processing Systems

* Transfer huge amounts of data
* Disregard that transferring data summaries may suffice

West-US East-US

oy hiw - Q- &



Distributed Systems typically rely on ...

* Fixed configurations
* One-size-fits-all thresholds
e Hardcoded rules

Sub-optimal systems
efficiency and performance



What we actually want ...

¢ Fixed-configurations * Dynamic configurations
* One-size-fits-allthresholds ¢ Custom thresholds

e Hardcodedrules | earnrules

Improve systems
efficiency and performance



Distributed Systems need to ...

* Adapt to different runtime conditions
*Be tuned on a case-by-case basis at running time
* Leverage data and problem structure

Machine Learning to the rescue!



Optimizing Distributed Systems
using Machine Learning

. CURATOR: ML-based policy to schedule storage tasks
. ADARES: ML-based mechanism to adjust VM resources

. PULPO: ML-System co-design to train models from geo-
distributed datasets
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ML Challenges for Distributed Systems

1. Cold start

* Speed up training

* Minimize interactions with environment
2. Model setup

* Collection of features
* Quantify performance

3. Exploration and Interpretability
* Maintain normal functioning
* Insight to operators



ML Challenge 1: Cold Start

* Leverage historical traces
* Pre-train models to accelerate training and reduce sample complexity

* Use transfer learning from simulations to real environments
* Expose agents to relevant situations in advance
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ML Challenge 2: Model Setup

* Create efficient sensing mechanisms
 Cluster-level metrics
* Node-level metrics
* VM-level metrics

* Propose intuitive reward functions
* High performance (e.g., low latency)
* High efficiency (e.g., high CPU usage)



ML Challenge 3: Exploration and Interpretability

* Promote safe online exploration
* Do unsafe exploration offline using simulators
* Revise ML-based decisions with business constraints

* Leverage models that provide uncertainty in predictions
* Better understanding of the decision-making process
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Cluster Storage Systems

* Significant functionality
* Automatic replication and recovery
» Seamless integration of SSDs and HDDs
* Snapshotting and reclamation of unnecessary data

* Much of functionality can be done in the background

Scheduling of these tasks is key
to overall cluster performance



CURATOR

Framework and systems support for building background tasks

CHALLENGE

* Heterogeneity across and within clusters over time
* Use reinforcement learning to schedule the background tasks
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Tiering Task
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* Move cold data from a faster
storage tier to a slower tier
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50% of clusters
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* Threshold-based policy to 20 40 6 80 100
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trigger the task

* Maximize SSD effectiveness
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Many clusters waste
25% of fast storage

Need smarter scheduling policies



Reinforcement Learning (RL)
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Reinforcement Learning for Tiering

e State: cluster-level features
* Utilization: CPU, memory, SSD
* Performance: read / write IOPS

* Actions: run, not run
* Reward: -1« latency

* Pre-trained our agents with real traces from other clusters



Evaluation Results

40
35
30
25
20

LATENCY
SSD READS

[
®)

Improvement (%)

O U

oltp oltp skewed oltp varying oltp and vdi dss

®latency = ssdreads

26



CURATOR Summary

Framework and systems support for building background tasks

 Used reinforcement learning to schedule the tasks
* Bootstrapped our agents with historical traces from real clusters
* Results on Tiering showed up to ~20% latency improvements
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Large-Scale Measurement Study

* 1-month trace from Nutanix clusters
* 253k VMs
* 17k nodes
* 3.6k clusters



Measurement Findings

* Most VMs in enterprise clusters not sized appropriately
* Many clusters with both under and overprovisioned VMs
* Significant variation of utilization for VMs across time

Need a system that adaptively changes
resources allocated to VMs in a cluster



ADARES

Framework and systems support for adjusting VM resources
on-the-fly, namely vCPUs and memory

CHALLENGES

* Adaptive and improve over time
* Use contextual bandits to perform the adaptations

 Extensible, flexible, and scalable framework
» Decompose architecture into decoupled and highly configurable components
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Contextual Bandits
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Contextual Bandits for VM Resource Management

* Context: cluster, node, and VM-level features
e Utilization: CPU [ memory
* Performance: latency, IOPS, swap rates, CPU ready times

* Arms/Actions: per resource type
* Up/Down [Noop

* Reward: {o, 1} per resource type
* 1: Move away from “bad” states, increase utilization
* 0: Lead to "bad” or “worse” states, decrease utilization

* Pre-train our agents offline using simulators
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Challenges

» Adaptive and improve over time
* Extensible, flexible, and scalable framework
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Challenges

 Extensible, flexible, and scalable framework
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ADARES Services
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Methods

* Passive: no configuration changes

* Reactive: changes based on target thresholds using
current resource utilization

* Proactive: changes based on target thresholds using
predicted max resource utilization

* Bandits: adjusts resources using contextual bandits with
model that provides uncertainty in predictions
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Resource Balancing
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Resource Utilization
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ADARES Summary

Framework and systems support for adjusting VM resources
on-the-fly, namely vCPUs and memory

* Used contextual bandits to perform the VM adaptations
* Leveraged transfer learning from simulations to real environment
* Results showed allocation and utilization improvements over other baselines

» Decomposed architecture into decoupled and highly configurable components
* Easily extensible and scalable, and agnostic to ML model
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Geo-Distributed Machine Learning (GDML)

* Data generated and stored in data centers around
the world

* Minimize latency between serving infra and end-users
* Respect regulatory constraints

* Machine learning apps require global view
* Fraud Prevention
* Recommender Systems
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Previous Solutions: Centralized

1. Copy all the data partitions into one data center
2. Training takes places intra-data center (in-DC)



Problems with Centralized

* High cross-data center (X-DC) bandwidth consumption
* Privacy and data sovereignty regulations

Need a system to efficiently train ML
models from geo-distributed datasets



PuLPo

Framework and systems support for geo-distributed training

CHALLENGES

* Reduce communication between data centers
* Trade-off in-DC computation and communication with X-DC communication

 Extensible, flexible, and scalable framework
* Use/extend Apache Hadoop YARN and Apache REEF
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Communication-Efficient Algorithm

FADL [Mahajan et al., JMLR ‘15]

* Initialize global state

* Send global state

-~ ~

* DCs compute a local state w”
= Germany
* Send local state —

[=as
[ —--
* Aggregate local states /I\ A

* Negligible DC computation =SIEIEIEIE = | |= | |=
* Update global state =588 —

More in-DC cmp. and comm.
Less X-DC communication
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Challenges

* Reduce communication between data centers
 Extensible, flexible, and scalable framework
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Challenges

 Extensible, flexible, and scalable framework



PuLPo Architecture

e Multi-level communication trees across DCs
e Learning algorithms in terms of B/R primitives

e Generalized control plane
* Data aggregation, communication, etc.

e Federated version
 Single massive YARN cluster
e Network-aware resource requests




Evaluation Setup

* Logistic Regression with L2 regularization

 Data randomly distributed

* Click-through rate datasets (CRITEO and KAGGLE)
* Simulation (2, 4, 8 data centers)

* Real Setup (West US and West Europe)



Methods

* Centralized: trains in-DC
* Bulk: batch replication scheme (copy time included)
* Stream: streaming copy model (copy time not included)

* Distributed: trains X-DC w/o comm-efficient algorithm
* Distributed-Fadl: trains X-DC with comme-efficient algo
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X-DC Transfer (Simulation)
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Running Time (Real Azure Setup)
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PuLPo

Framework and systems support for geo-distributed training

* Traded-off in-DC comp. and comm. with X-DC communication
* Reduced WAN bandwidth consumption while achieving same accuracy results

* Used/extended Apache Hadoop YARN and Apache REEF

* Single job across data centers
* Network-aware placement of tasks
* Requires algorithm to be expressed in terms of B/R primitives
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Outline

e Conclusions



Conclusions

We can use Machine Learning to optimize Distributed Systems

* ML-based Policy

* CURATOR, framework and systems support for building background maintenance tasks
* RL-based scheduling showed performance improvements over a threshold-based approach

e ML-based Mechanism

* ADARES, framework and systems support for adjusting VM resources on-the-fly

 Contextual bandits-based adjustments showed more efficient resource allocations
compared to other baselines

* ML-System Co-Design
* PuLPO, framework and systems support for efficiently training geo-distributed ML models

* Co-designed ML-System solution showed orders of magnitude savings in terms of X-DC
bandwidth utilization compared to other approaches
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Conclusions

We can use Machine Learning to optimize Distributed Systems

* ML-based Policy

* CURATOR, framework and systems support for building background maintenance tasks
* RL-based scheduling showed performance improvements over a threshold-based approach

e ML-based Mechanism

* ADARES, framework and systems support for adjusting VM resources on-the-fly

 Contextual bandits-based adjustments showed more efficient resource allocations
compared to other baselines

* ML-System Co-Design
* PuLPO, framework and systems support for efficiently training geo-distributed ML models

* Co-designed ML-System solution showed orders of magnitude savings in terms of X-DC
bandwidth utilization compared to other approaches
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Backup Slides



CURATOR Backup



Operations interposed .
P P Data replication

at the hypervisor level - : _
and rZBirected to N Uta NIX C I U Ste 'S Disk balancing

v VM Migration
SCSI antroller “| controller
[ ——— N ]
? CPU
Integrated Global view of

Compute-Storage cluster state
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Distributed Key-Value Store

* Metadata for the entire storage system stored in k-v store
* Foreground I/O and background tasks coordinate using the k-v store

* Key-value store supports replication and consistency using Paxos
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MapReduce Framework

* Globally distributed maps processed using MapReduce

* System-wide knowledge of metadata used to perform various
self-managing tasks

66



Data Structures and Metadata Maps

* Data stored in units called extents
* Extents are grouped together and stored as extent groups on

physical devices file

"o 1 2 3 4 !

I I I I

I I I I

C .

xtent Id Map : : : :
Extent Group Id Map

33

Ll 1984 diska,disk2

* Multiple levels of redirection simplifies data sharing across files
and helps with minimizing map updates &



Example: Tiering

* Move cold data from fast (SSD) to slow storage (HDD, Cloud)

* Identify cold data using a MapReduce job
* Modified Time (mtime): Extent Group Id map
* Access Time (atime): Extent Group Id Access Map
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Example: Tiering

* egid 120
* mtime owned by Node A
* atime owned by Node D

Metadata Ring

* egid 120 =="cold” ?
* Maps globally distributed
- not a local decision

* Use MapReduce to perform a “join”
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Example: Tiering
* Map phase

* Scan both metadata maps
* Emit egid -> mtime or atime
* Partition using egid

* Reduce phase

* Reduce based on egid
* Generate tuples (egid,mtime,atime)
* Sort locally and identify the cold
egroups

120 -> mtime

120 -> atime

A 4

(120,mtime,atime)
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Tiering Modeling Constraints

* Wide heterogeneity of clusters and workloads
* Variability of resource demands over time

* Don't know what would have happened had we made a
different decision, need to try things out

* Decisions may impact performance over a long horizon
* Delayed feedback



Q-Learning: RL algorithm

Learned Value

Q(st,a¢) = (1 — a)Q(s¢,a¢) + a(riyr +ymaz,Q(si41,a))

Old Value Estimate of optimal
future value

0 < a <1 LearningRate

0<~<1 Discount Factor



Scheduling Decisions with RL

run although
cluster highly
utilized and

low latency LEARNED not to

run in those cases
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Related Work (non-exhaustive)

* Ipek et al. [ISCA '08]: RL-based memory scheduler to decide which DRAM
command to perform in the next cycle (precharge, activate, read, write)

* Eastep et al. [ICAC *10] - SmartLocks: uses RL to decide which waiter
process will get the lock next for the best long-term effect

* Prashanth et al. [IEEETITS * 11]: RL-based controller for scheduling traffic
control signals

* Mao et al. [HotNets '16] - DeepRM: RL-based scheduler of jobs in a cluster

* Chinchali et al. [AAAI ‘18] - RL-based scheduler to determine the traffic
rate for loT data in mobile networks
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ADARESs Backup



Why Contextual Bandits?

* VM workloads change frequently
* Incoming VMs don’t have records at all

* Learning task should estimate the result of making a
resource adjustment

* Don't know what would have happened had we done a
different change, need to try things out

* Immediate feedback

76



System Architecture
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Transfer Learning: Simulation to Real

* Requirements
* Reasonable emulation of the dynamics of the cluster
* Simplistic analytical models to obtain x,and r,

* Challenges
* Large # of components and connections
* Complex dependencies, irregular interactions

* Data-driven approach

* Controlled experiments in real clusters where we perform VM
configuration changes and record their impact

* 1/0 benchmarks (rr, rw, rrw, sequential) to profile IOPS and latencies
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Related Work (non-exhaustive)

* Auto-scaling systems (AWS, GCP)
* Scale out/in based on target utilization metrics, i.e., thresholds
* No vertical scaling but they do sizing recommendations

* Vasic et al. [ASPLOS '12] - DejaVu: predictable workloads, clustering to
identify workload categories

* Bu et al. [IEEETPDS '12]: CoTuner: RL to change VM limits in the hypervisor

* Delimitrou et al. [ASPLOS '13] - Paragon: online workload profiling and
classification using collaborative filtering

* Venkataraman et al. [NSDI '16] - Ernest: Predictable structure of jobs to
predict runtime and assign right hardware configuration

* Yadwadkar et al. [SoCC ‘17] - RF to identify best VM across cloud providers
* Cortez et al. [SOSP '17] - Resource Central: assignment of VMs to servers
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ADAREs Extensions

* More comprehensive evaluations (e.g., real workloads, sensitivity
analyzes of thresholds)

* More measurement sensors (e.g., application-level metrics)
* Control other type of resources (e.g., storage, networking)
* Manage containers



PuLpo Backup



Distributed Machine Learning (DML)

* Dataset partitioned among workers West-US
* Training proceeds in comm. rounds
* Server node sends algorithm “state”

* Workers perform computations
based on the received “state” and
their shard of the dataset

* Workers send update back to server = @@

* Server applies the updates to the

- . More computation
state” and process repeats

Less communication
FADL [Mahajan et al., JMLR *15] %



Algorithm

Choose w
for r=0,1... do
Compute g" (X-DC communication)
Exit if ||g"|| < €l9° ||
for p=1,..., P (in parallel) do

0

Construct fp(w)
w,, + Optimize f,(w) (in-DC communication)
end for
d" + 3 >, wp —w" (X-DC communication)
Line Search to find ¢ (negligible X-DC communication)
wt —w +td
end for




Algorithm

1. Initialize w°

DC-1 /Coordinator
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Algorithm

1. Initialize w°

2. DCs compute gradient in
parallel

DC-1 /Coordinator
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Algorithm

1. Initialize w°

2. DCs compute gradient in
parallel

3. Aggregate gradient

DC-1 /Coordinator
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DC-1 /Coordinator
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Algorithm

1. Initialize w°

2. DCs compute gradient in
parallel

3. Aggregate gradient

4. DCs local optimization in
parallel

DC-1 /Coordinator
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Algorithm

1. Initialize w°

2. DCs compute gradient in
parallel

3. Aggregate gradient

4. DCs local optimization in
parallel

5. Aggregate descent direction

DC-1 /Coordinator
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Algorithm

1. Initialize w°

2. DCs compute gradient in
parallel

3. Aggregate gradient

4. DCs local optimization in
parallel

5. Aggregate descent direction

DC-1 /Coordinator
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Algorithm

1. Initialize w°

2. DCs compute gradient in
parallel

3. Aggregate gradient

4. DCs local optimization in
parallel

5. Aggregate descent direction
6. DCs do line search in parallel

DC-1 /Coordinator
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Algorithm

1. Initialize w°

2. DCs compute gradient in
parallel

3. Aggregate gradient

4. DCs local optimization in
parallel

5. Aggregate descent direction
6. DCs do line search in parallel

DC-1 /Coordinator
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Algorithm

1. Initialize w°

2. DCs compute gradient in
parallel

3. Aggregate gradient

4. DCs local optimization in
parallel

5. Aggregate descent direction
6. DCs do line search in parallel

7. Update model with best step
size

DC-1 /Coordinator
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Algorithm

1. Initialize w°

2. DCs compute gradient in
parallel

3. Aggregate gradient

4. DCs local optimization in
parallel

5. Aggregate descent direction

6. DCs do line search in parallel

7. Update model with best step
size

8. Repeat

DC-1 /Coordinator
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Related Work (non-exhaustive)

* Analytic workloads
* Vulimiri et al. [NSDI ‘a5]: reduce WAN bandwidth

* Pu et al. [SIGCOMM '15] - Iridium: optimize task and data placement to minimize
query response time

* Streaming setting
* Rabkin et al. [NSDI ‘24]: compute near the edge and only send “important” data

* Lazerson et al. [VLDB ‘'15]: distributed monitoring

* Information retrieval
* Baeza-Yates et al. [CIKM ‘og]: reduce end-user latency in multi-site search engines

* Machine learning

* Hsieh et al. [NSDI '17] - Gaia: emphasis on reducing training time. Different
consistency models to do asynchronous updates

* McMahan et al. [AISTATS ‘17]: federated learning using mobile devices
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